
 Varuvan Vadivelan

Dharmapuri – 636 703

ACADEMIC YEAR 2017-18 (ODD SEMESTER)

Regulation : 2013

Branch : B.E. – ECE

Year & Semester : II Year / III Semester

Institute of Technology

LAB MANUAL

EC6312-OOPS AND DATA STRUCTURES

LABORATORY

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

ANNA UNIVERSITY: CHENNAI

REGULATION: 2013

SYLLABUS

LIST OF EXPERIMENTS:
IMPLEMENTATION IN THE FOLLOWING TOPICS:

1. Basic Programs for C++ Concepts

2. Array implementation of List Abstract Data Type (ADT)

3. Linked list implementation of List ADT

4. Cursor implementation of List ADT

5. Stack ADT - Array and linked list implementations

6. The next two exercises are to be done by implementing the following source files

i. Program source files for Stack Application 1

ii. Array implementation of Stack ADT

iii. Linked list implementation of Stack ADT

iv. Program source files for Stack Application 2

v. An appropriate header file for the Stack ADT should be included in (i) and (iv)

7. Implement any Stack Application using array implementation of Stack ADT (by

 implementing files (i) and (ii) given above) and then using linked list

8. Implementation of Stack ADT (by using files (i) and implementing file (iii))

9. Implement another Stack Application using array and linked list implementations of Stack

 ADT (by implementing files (iv) and using file (ii), and then by using files (iv) and (iii))

10. Queue ADT – Array and linked list implementations

11. Search Tree ADT - Binary Search Tree

12. Implement an interesting application as separate source files and using any of the

 Searchable ADT files developed earlier. Replace the ADT file alone with other

 appropriate ADT files. Compare the performance.

13. Quick Sort

TOTAL: 45 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ compiler 30 Nos.

 (or)

Server with C++ compiler supporting 30 terminals or more.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

INDEX

EX.

NO.
NAME OF THE EXERCISE

PAGE

NO.

STAFF

SIGNATURE
REMARKS

1 STUDENTS RECORD (CLASS AND OBJECT)

2 UNARY OPERATORS OVERLOADING

3 INHERITANCE

4 FUNCTION OVERLOADING

5 ARRAY IMPLEMENTATION OF LIST ADT

6
INKED LIST IMPLEMENTATION OF LIST

ADT

7 CURSOR IMPLEMENTATION OF LIST ADT

8 ARRAY IMPLEMENTION OF STACK ADT

9 STACK ADT USING LINKED LIST

10
PROGRAM SOURCE FILES FOR STACK

APPLICATION1

11
PROGRAM SOURCE FILES FOR STACK

APPLICATION2

12 QUEUE ADT USING LINKED LIST

13 QUEUE ADT USING ARRAY

14 BINARY SEARCH TREE

15 HEAP SORT

16 QUICK SORT

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:1 STUDENTS RECORD (CLASS AND OBJECT)

AIM:

To write a program in C++ to prepare a student Record using class and object.

DESCRIPTION:

The main purpose of C++ programming is to add object orientation to the C

programming language and classes are the central feature of C++ that supports object-

oriented programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation

and methods for manipulating that data into one neat package. The data and functions within

a class are called members of the class.

C++ Class Definitions

When you define a class, you define a blueprint for a data type. This doesn't actually

define any data, but it does define what the class name means, that is, what an object of the

class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the

class body, enclosed by a pair of curly braces. A class definition must be followed either by a

semicolon or a list of declarations. For example, we defined the Box data type using the

keyword class as follows:

class Box {

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that

follow it. A public member can be accessed from outside the class anywhere within the scope

of the class object. You can also specify the members of a class as private or protected which

we will discuss in a sub-section.

Define C++ Objects

A class provides the blueprints for objects, so basically an object is created from a

class. We declare objects of a class with exactly the same sort of declaration that we declare

variables of basic types. Following statements declare two objects of class Box:

Box Box1; // Declare Box1 of type Box

Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

Accessing the Data Members

The public data members of objects of a class can be accessed using the direct

member access operator (.). Let us try the following example to make the things clear:

ALGORITHM:

1. Create a class record.

2. Read the name, Regno, mark1, mark2, mark3 of the student.

3. Calculate the average of mark as Avg=mark1+mark2+mark3/3

4. Display the student record.

5. Stop the program.

PROGRAM:

#include<iostream.h>

#include<conio.h>

class record

{

public:

char name[20];

int regno;

int marks,m1,m2,m3;

float avg;

void getdata()

{

cout<<"\nenter the name: " ;

cin>>name;

cout<<"enter the regno: ";

cin>>regno;

cout<<"enter the m1,m2,m3: \n";

cin>>m1>>m2>>m3;

 }

void calculate()

{

avg=(m1+m2+m3)/3;

}

void display()

{

cout<<"******************\n";

cout<<"\nName: "<<name;

cout<<"\nRegno: "<<regno;

cout<<"\nMark1: "<<m1;

cout<<"\nMark2: "<<m2;

cout<<"\nMark3: "<<m3;

cout<<"\nAvg: "<<avg;

cout<<"******************\n";

}

};

void main()

{

record r;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

clrscr();

r.getdata();

r.calculate();

r.display();

getch();

}

OUT PUT

RESULT:

Thus the C++ program for implementation of classes and objects was created,

executed and output was verified successfully.

EX.NO:2 UNARY OPERATORS OVERLOADING

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

AIM:

To write a C++ program for implementing the unary operator overloading.

DESCRIPTION:

The unary operators operate on a single operand and following are the examples of

Unary operators:

• The increment (++) and decrement (--) operators.

• The unary minus (-) operator.

• The logical not (!) operator.

The unary operators operate on the object for which they were called and normally,

this operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime

they can be used as postfix as well like obj++ or obj--.

ALGORITHM:

1. Start the process.

2. Invoke the class counter.

3. Crate two objects c1 and c2 and assign values to them.

4. Call c1.get_count() and then Call c2.get_count()

5. Increment the values C1++ , C2++ and ++c2

6. Print c1 and c2.

7. Stop the process

PROGRAM:

#include<iostream.h>

#include<conio.h>

class counter

{

int count;

public:

counter()

{

count=0;

}

int get_count()

{

return count;

}

void operator++()

{

count++;

}

};

void main()

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

{

counter c1,c2;

cout<<"\nC1 ="<<c1.get_count();

cout<<"\nC2 ="<<c2.get_count();

c1++; //Using overloaded ++ operator.

c2++;

++c2;

cout<<"\nC1 ="<<c1.get_count();

cout<<"\nC2 ="<<c2.get_count();

getch();

}

OUTPUT

RESULT:

Thus the C++ program for Unary Operator Overloading was created, executed and

output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:3 INHERITANCE

AIM:
To write a C++ program for implementing the inheritance.

DESCRIPTION:

One of the most important concepts in object-oriented programming is that of

inheritance. Inheritance allows us to define a class in terms of another class, which makes it

easier to create and maintain an application. This also provides an opportunity to reuse the

code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the members of an

existing class. This existing class is called the base class, and the new class is referred to as

the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A

animal, dog IS-A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes

A class can be derived from more than one class, which means it can inherit data and

functions from multiple base classes. To define a derived class, we use a class derivation list

to specify the base class (es). A class derivation list names one or more base classes and has

the form:

Class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the

name of a previously defined class. If the access-specifier is not used, then it is private by

default.

Access Control and Inheritance

A derived class can access all the non-private members of its base class. Thus base-

class members that should not be accessible to the member functions of derived classes

should be declared private in the base class.

A derived class inherits all base class methods with the following exceptions:

• Constructors, destructors and copy constructors of the base class.

• Overloaded operators of the base class.

• The friend functions of the base class.

ALGORITHM:

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

1. Start the process.

2. Define the base class with variables and functions.

3. Define the derived class with variables and functions.

4. Get two values in main function.

5. Define the object for derived class in main function.

6. Access member of derived class and base class using the derived class object.

7. Stop the process.

PROGRAM:

#include<iostream.h>

#include<conio.h>

class base

{

public:

int x;

void set_x(int n)

{

x=n;

}

void show_x()

{

cout<<”\n\t Base class….”;

cout<<”\n\tx=”<<x;

}

};

class derived:public base

{

int y;

public:

void set_y(int n)

{

y=n;

}

void show_xy()

{

cout<<”\n\n\t derived class…”;

cout<<”\n\tx=”<<x;

cout<<”\n\ty=”<<y;

}

};

void main()

{

derived obj;

int x,y;

clrscr();

cout<<”\n enter the value of x: ”;

cin>>x;

cout<<”\n enter the value of y: ”;

cin>>y;

obj.set_x(x);//inherits base class

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

obj.set_y(y);//acess member of derived class

obj.show_x();//inherits base class

obj.show_xy();//acess member of derived class

getch();

}

OUTPUT:

RESULT:

Thus the C++ program for inheritance was created, executed and output was verified

successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:4 FUNCTION OVERLOADING

AIM:
To write a C++ program for implementing the function overloading.

DESCRIPTION:

Function overloading in C++ You can have multiple definitions for the same function

name in the same scope. The definition of the function must differ from each other by the

types and/or the number of arguments in the argument list. You cannot overload

function declarations that differ only by return type.

C++ allows you to specify more than one definition for a function name or an

operator in the same scope, which is called function overloading and operator

overloading respectively.

An overloaded declaration is a declaration that had been declared with the same name as a

previously declared declaration in the same scope, except that both declarations have

different arguments and obviously different definition (implementation).

When you call an overloaded function or operator, the compiler determines the most

appropriate definition to use by comparing the argument types you used to call the function

or operator with the parameter types specified in the definitions. The process of selecting the

most appropriate overloaded function or operator is called overload resolution.

Function overloading in C++

You can have multiple definitions for the same function name in the same scope. The

definition of the function must differ from each other by the types and/or the number of

arguments in the argument list. You cannot overload function declarations that differ only by

return type.

ALGORITHM:

1. Define a class test.

2. Define the function sum with different arguments with different data types.

3. Define the object for the class test in main function.

4. Call the function using the argument type to perform different operations.

5. Print the output.

PROGRAM:

#include<iostream.h>

#include<conio.h>

class test

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

public:

int sum(int,int);

float sum(float,float);

double sum(double,double);

};

int test::sum(int a, int b)

{

 return(a+b);

}

float test::sum(float a ,float b)

{

return(a+b);

}

double test::sum(double a, double b)

{

return(a+b);

}

void main()

{

test obj;

int choice,ans;

int a,b;

float x,y;

double m,n;

double result=0;

clrscr();

cout<<"\n\t\t main menu";

cout<<"\n\t1. Addition of two integer numbers";

cout<<"\n\t2. Addition of two float numbers";

cout<<"\n\t3. Addition of two double numbers"<<endl;

do

{

cout<<"\n enter your choice:";

cin>>choice;

switch(choice)

{

case 1: cout<<"\n enter 2 numbers";

cin>>a>>b;

result=obj.sum(a,b);

break;

case 2:

cout<<"\n enter 2 number";

cin>>x>>y;

result=obj.sum(x,y);

break;

case 3:

cout<<"\n enter 2 number";

cin>>m>>n;

result=obj.sum(m,n);

break;

default:

cout<<"wrong choice";

break;

}

cout<<"\n\n result"<<result<<endl;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\ndo you want to continue:";

ans=getch();

}

while(ans=='y'||ans=='Y');

getch();

}

OUTPUT :

RESULT:

Thus the C++ program for function Overloading was created, executed and output

was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:5 ARRAY IMPLEMENTATION OF LIST ADT

AIM:
To write a C++ program for array implementation of List ADT.

DESCRIPTION:

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to

another link. Linked list is the second most-used data structure after array.

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to

another link. Linked list is the second most-used data structure after array.

Following are the important terms to understand the concept of Linked List.

• Link − each link of a linked list can store a data called an element.

• Next − each link of a linked list contains a link to the next link called Next.

• Linked List − A Linked List contains the connection link to the first link

called First.

ALGORITHM:

Step1: Create nodes first, last; next, prev and cur then set the value as NULL.

Step 2: Read the list operation type.

Step 3: If operation type is create then process the following steps.

1. Allocate memory for node cur.

2. Read data in cur's data area.

3. Assign cur node as NULL.

4. Assign first=last=cur.

Step 4: If operation type is Insert then process the following steps.

1. Allocate memory for node cur.

2. Read data in cur's data area.

3. Read the position the Data to be insert.

4. Availability of the position is true then assing cur's node as first and first=cur.

5. If availability of position is false then do following steps.

1. Assign next as cur and count as zero.

2. Repeat the following steps until count less than postion.

1 .Assign prev as next

2. Next as prev of node.

3. Add count by one.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

4. If prev as NULL then display the message INVALID POSITION.

5. If prev not qual to NULL then do the following steps.

1. Assign cur's node as prev's node.

2. Assign prev's node as cur.

Step5: If operation type is delete then do the following steps.

1. Read the position .

2. Check list is Empty .If it is true display the message List empty.

3. If position is first.

1. Assign cur as first.

2. Assign First as first of node.

3. Reallocate the cur from memory.

4. If position is last.

1. Move the current node to prev.

2. cur's node as Null.

3. Reallocate the Last from memory.

4. Assign last as cur.

5. If position is enter Mediate.

1. Move the cur to required postion.

2. Move the Previous to cur's previous position

3. Move the Next to cur's Next position.

4. Now Assign previous of node as next.

5. Reallocate the cur from memory.

step 6: If operation is traverse.

1. Assign current as first.

2. Repeat the following steps untill cur becomes NULL.

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<process.h>

void create();

void insert();

void deletion();

void search();

void display();

int a,b[20],n,d,e,f,i;

void main()

{

int c;

clrscr();

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\n Main Menu";

cout<<"\n 1.Create \n 2.Delete \n 3.Search \n 4.insert \n

5.Display \n 6.Exit";

do

{

cout<<"\n enter your choice:";

cin>>c;

switch(c)

{

case 1: create(); break;

case 2: deletion(); break;

case 3: search(); break;

case 4: insert(); break;

case 5: display(); break;

case 6: exit(0); break;

default:

cout<<"The given number is not between 1-5\n";

}

}

while(c<=6);

getch();

}

void create()

{

cout<<"\n Enter the number of elements you want to

create: "; cin>>n;

cout<<"\nenter the elements\n";

for(i=0;i<n;i++)

{

cin>>b[i];

}

}

void deletion()

{

cout<<"Enter the number u want to delete \n";

cin>>d;

for(i=0;i<n;i++)

{

if(b[i]==d)

{

b[i]=0;

cout<<d<<" deleted";

}

}

}

void search()

{

cout<<"Enter the number \n";

cin>>e;

for(i=0;i<n;i++)

{

if(b[i]==e)

{

cout<<"Value found the position\n"<<i+1;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

}

}

void insert()

{

cout<<"\nenter how many number u want to insert: ";

cin>>f;

cout<<"\nEnter the elements\n";

for(i=0;i<f;i++)

{

cin>>b[n++];

}

}

void display()

{

for(i=0;i<n;i++)

{

cout<<"\n"<<b[i];

}

}

OUTPUT:

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

RESULT:

 Thus the C++ program for array implementation of list ADT was created, executed

and output was verified successfully

EX.NO:6 LINKED LIST IMPLEMENTATION OF LIST ADT

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

AIM:
To write a C++ program to implement a linked list and do all operations on it.

DESCRIPTION:

 A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to

another link. Linked list is the second most-used data structure after array.

Following are the important terms to understand the concept of Linked List.

• Link − each link of a linked list can store a data called an element.

• Next − each link of a linked list contains a link to the next link called Next.

• Linked List − A Linked List contains the connection link to the first link

called First.

 Linked list can be visualized as a chain of nodes, where every node points to the next

node.

• Linked List contains a link element called first.

• Each link carries a data field(s) and a link field called next.

• Each link is linked with its next link using its next link.

• Last link carries a link as null to mark the end of the list.

Types of Linked List

Following are the various types of linked list.

• Simple Linked List − Item navigation is forward only.

• Doubly Linked List − Items can be navigated forward and backward.

• Circular Linked List − Last item contains link of the first element as next and

the first element has a link to the last element as previous.

Basic Operations

Following are the basic operations supported by a list.

• Insertion − Adds an element at the beginning of the list.

• Deletion − Deletes an element at the beginning of the list.

• Display − Displays the complete list.

• Search − Searches an element using the given key.

• Delete − Deletes an element using the given key.

ALGORITHM:
1. Start the process.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

2. Initialize and declare variables.

3. Enter the choice.

4. If choice is INSERT then

a. Enter the element to be inserted.

b. Get a new node and set DATA[NEWNODE] = ITEM.

c. Find the node after which the new node is to be inserted.

d. Adjust the link fields.

e. Print the linked list after insertion.

5. If choice is DELETE then

a. Enter the element to be deleted.

b. Find the node containing the element (LOC) and its preceding node (PAR).

c. Set ITEM = DATA[LOC] and delete the node LOC.

d. Adjust the link fields so that PAR points to the next element. ie LINK[PAR] =

LINK [LOC].

e. Print the linked list after deletion.

6. Stop the process.

PROGRAM:
#include<iostream.h>

#include<conio.h>

#include<lib.h>

#define TRUE 1

#define FALSE 0

class sll

{

private:

struct node

{

int data;

struct node *next;

}*head;

public:

sll();

void create();

void display();

void search(int key);

void insert_head();

void insert_after();

void insert_last();

void dele();

~sll();

};

sll::sll()

{

head=NULL;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

sll::~sll()

{

node *temp,*temp1;

temp=head->next;

delete head;

while(temp!=NULL)

{

temp1=temp->next;

delete temp;

temp=temp1;

}

}

void sll::create()

{

node *temp,*New;

int val,flag;

char ans='y';

flag=TRUE;

do

{

cout<<"\n\nEnter the data:";

cin>>val;

New=new node;

if(New==NULL)

cout<<"unable to allocate memory\n";

New->data=val;

New->next=NULL;

if(flag==TRUE)//executed only for the first time

{

head=New;

temp=head;

flag=FALSE;

}

else

{

temp->next=New;

temp=New;

}

cout<<"\n do you want to enter more elements?(y/n)";

ans=getch();

}

while(ans=='y'||ans=='Y');

cout<<"\n the singly linked list is created\n";

getch();

}

void sll::display()

{

node *temp;

temp=head;

if(temp==NULL)

{

cout<<"\n the list is empty\n";

getch();

clrscr();

return;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

}

while(temp!=NULL)

{

cout<<temp->data<<" ";

temp=temp->next;

}

getch();

}

void sll::search(int key)

{

node *temp;

int found;

temp=head;

if(temp==NULL)

{

cout<<"linked list is empty\n";

getch();

clrscr();

}

found=FALSE;

while(temp!=NULL&&found==FALSE)

{

if(temp->data!=key)

temp=temp->next;

else

found=TRUE;

}

if(found==TRUE)

{

cout<<"\n the element is present in the list\n";

getch();

}

else

{

cout<<"\nThe element is not present in the list\n";

getch();

}

}

void sll::dele()

{

node *temp,*prev;

int key;

temp=head;

cout<<"\n Enter the data of the node you want to delete:

";

cin>>key;

while(temp!=NULL)

{

if (temp->data==key)//traverse till required node to

delete

break; //is found

prev=temp;

temp=temp->next;

}

if(temp==NULL)

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\n node not found";

else

{

if(temp==head)//first node

head=temp->next;

else

prev->next=temp->next; //intermediate or end node

delete temp;

cout<<"\n the element is deleted\n";

}

getch();

}

void sll::insert_last()

{

node *New,*temp;

cout<<"\n Enter the element which you want to insert: ";

cin>>New->data;

if(head==NULL)

head=New;

else

{

temp=head;

while(temp->next!=NULL)

temp=temp->next;

temp->next=New;

New->next=NULL;

}

}

void sll::insert_after()

{

int key;

node *temp,*New;

New=new node;

cout<<"\n Enter the element which you want to insert: ";

cin>>New->data;

if(head==NULL)

{

head=New;

}

else

{

cout<<"\n Enter the element after which you want to

insert the node: ";

cin>>key;

temp=head;

do

{

if(temp->data==key)

{

New->next=temp->next;

temp->next=New;

break;

}

else

temp=temp->next;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

}

while(temp!=NULL);

}

}

void sll::insert_head()

{

node *New,*temp;

New=new node;

cout<<"\n Enter the element which you want to insert: ";

cin>>New->data;

if(head==NULL)

head=New;

else

{

temp=head;

New->next=temp;

head=New;

}

}

void main()

{

sll s;

int choice,val,

ch1;

char ans='y';

clrscr();

cout<<"\n\n\tProgram to perform various operations on

linked list";

cout<<"\n1.Create";

cout<<"\n2.Display";

cout<<"\n3.Search";

cout<<"\n4.Insert an element in a list";

cout<<"\n5.Delete an element from list";

cout<<"\n6.Quit";

do

{

cout<<"\n\nEnter your choice(1-6): ";

cin>>choice;

switch(choice)

{

case 1: s.create();

break;

case 2:s.display();

break;

case 3:cout<<"enter the element you want to

search";

cin>>val;

s.search(val);

break;

case 4:

clrscr();

cout<<"\n the list is:\n";

s.display();

cout<<"\n menu";

cout<<"\n1.insert at beginning ";

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\n2.insert after";

cout<<"\n3.insert at end";

cout<<"\n enter your choice";

cin>>ch1;

switch(ch1)

{

case 1:s.insert_head();

break;

case 2:s.insert_after();

break;

case 3:s.insert_last();

break;

default:cout<<"\n invalid choice";

}

break;

case 5:s.dele();

break;

case 6:exit(0);

default:cout<<"\n invalid choice";

}

cout<<"\nDo you want to continue? ";

cin>>ans;

}

while(ans=='y'||ans=='Y');

return;

}

OUTPUT:

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

RESULT:

Thus the C++ program for linked list implementation of list ADT was created,

executed and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:7 CURSOR IMPLEMENTATION OF LIST ADT

AIM:
To write a C++ program for cursor implementation of list ADT.

DESCRIPTION:

If linked lists are required and pointers are not available, then an

alternate implementation must be used. The alternate method we will describe is known as

a cursor implementation. The two important items present in a pointer implementation of

linked lists are

 1. The data is stored in a collection of structures. Each structure contains the data and

a pointer to the next structure.

2. A new structure can be obtained from the system's global memory by a call to

malloc and released by a call to free.

Algorithm:

1. Start the program.

2. Create a node with two fields’ data and link field. O Allocate space for the node

dynamically.

3. Create link between the created nodes and let the last node be with NULL Link

4. Insert the input data in the data field and press –1 to stop the same.

5. Get the choice of operations either insertion or deletion.

6. For insertion get the position in which insertion is to be done and the element to be

inserted. Check for the start, middle or end position of insertion. Insert the node and

change its link accordingly.

7. For deletion get the position in which deletion is to be done. Delete the node and then

link it to the next node. Before deletion check whether there is data in the list to be

deleted.

8. Using display option lists the elements of the list.

9. Stop the program.

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#define MAX 20

class LIST

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

private:

int List[MAX];

public:

int create();

void display(int);

void reverse(int);

int search(int);

void delet(int);

};

int LIST::create()

{

int n,i;

cout<<"\n how many elements you want in the list:";

cin>>n;

if(n>MAX)

cout<<"\n Error:Number of elements exceeds the limit";

for(i=0;i<n;i++)

 {

 cout<<"\nEnter the element number"<<i+1<<":";

 cin>>List[i];

}

 cout<<"\n The List is successfully created\n";

 return(n);

}

void LIST::display(int n)

{

int i;

cout<<"\n the list is:\n";

for(i=0;i<n;i++)

cout<<"\n"<<List[i];

}

void LIST::reverse(int n)

{

int i;

cout<<"\n the reversed list is:.\n";

for(i=n-1;i>=0;i--)

cout<<"\n"<<List[i];

}

int LIST::search(int n)

{

int i,key;

cout<<"\n enter the number you want to search?";

cin>>key;

for (i=0;i<n;i++)

{

if(List[i]==key)

{

cout<<"\n the given number is at

position:"<<i<<"\n";

return i;

}

}

cout<<"\n the given number is not in the list\n";

return -1;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

void LIST::delet(int n)

{

int i;

i=search(n);

if(i!=NULL)

{

List[i]=-1;

cout<<"Element deleted";

}

}

void main()

{

LIST obj;

int choice,len,position;

char ans;

clrscr();

cout<<"\n\t program to perform operations on ordered

list"; cout<<"\n 1.create";

cout<<"\n 2.display";

cout<<"\n 3.search for a number";

cout<<"\n 4.reverse";

cout<<"\n 5.delete";

cout<<"\n 6.Quit";

do

{

cout<<"\n enter your choice(1-6)";

cin>>choice;

switch(choice)

{

case 1:

len=obj.create();

break;

case 2:

obj.display(len);

break;

case 3:

position=obj.search(len);

break;

case 4:

obj.reverse(len);

break;

case 5:

obj.delet(len);

break;

case 6:

exit(0);

break;

default:

cout<<"\n invalid choice, try again";

break;

}

getch();

}while(choice!=6);

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT :

RESULT:

Thus the C++ program for cursor implementation of list ADT was created, executed

and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO:8 ARRAY IMPLEMENTION OF STACK ADT

AIM:
To write a C++ program for stack using array implementation.

DESCRIPTION:

 A stack data structure can be implemented using one dimensional array. But stack

implemented using array, can store only fixed number of data values. This implementation is

very simple, just define a one dimensional array of specific size and insert or delete the

values into that array by using LIFO principle with the help of a variable 'top'. Initially top is

set to -1. Whenever we want to insert a value into the stack, increment the top value by one

and then insert. Whenever we want to delete a value from the stack, then delete the top value

and decrement the top value by one.

ALGORITHM:

1. Define a array which stores stack elements..

2. The operations on the stack are

a. PUSH data into the stack

b. POP data out of stack

3. PUSH DATA INTO STACK

a. Enter the data to be inserted into stack.

b. If TOP is NULL

i. The input data is the first node in stack.

ii. The link of the node is NULL.

iii. TOP points to that node.

c. If TOP is NOT NULL

i. The link of TOP points to the new node.

ii. TOP points to that node.

4. POP DATA FROM STACK

a. If TOP is NULL

i. the stack is empty

b. If TOP is NOT NULL

i. The link of TOP is the current TOP.

ii. The pervious TOP is popped from stack.

5. The stack represented by linked list is traversed to display its content.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

class stack

{

int stk[5];

int top;

public:

stack()

{

top=-1;

}

void push(int x)

{

if(top > 4)

{

cout <<"stack over flow";

return;

}

stk[++top]=x;

cout <<"inserted" <<x;

}

void pop()

{

if(top <0)

{

cout <<"stack under flow";

return;

}

cout <<"deleted" <<stk[top--];

}

void display()

{

if(top<0)

{

cout <<" stack empty";

return;

}

for(int i=top;i>=0;i--)

cout <<stk[i] <<" ";

}

};

main()

{

int ch;

stack st;

clrscr();

cout <<"\n1.push \n2.pop \n3.display \n4.exit";

while(1)

{

cout<<"\nEnter ur choice";

cin >> ch;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

switch(ch)

{

case 1: cout <<"enter the element";

cin >> ch;

st.push(ch);

break;

case 2: st.pop(); break;

case 3: st.display();break;

case 4: exit(0);

}

}

return (0);

}

OUTPUT:

RESULT:

Thus the C++ program for array implementation of stack ADT was created, executed

and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 9 STACK ADT USING LINKED LIST

AIM:
To write a C++ program for stack ADT using linked list implementation.

DESCRIPTION:

The major problem with the stack implemented using array is, it works only for fixed

number of data values. That means the amount of data must be specified at the beginning of

the implementation itself. Stack implemented using array is not suitable, when we don't know

the size of data which we are going to use. A stack data structure can be implemented by

using linked list data structure. The stack implemented using linked list can work for

unlimited number of values. That means, stack implemented using linked list works for

variable size of data. So, there is no need to fix the size at the beginning of the

implementation. The Stack implemented using linked list can organize as many data values as

we want.

In linked list implementation of a stack, every new element is inserted as 'top'

element. That means every newly inserted element is pointed by 'top'. Whenever we want to

remove an element from the stack, simply remove the node which is pointed by 'top' by

moving 'top' to its next node in the list. The next field of the first element must be always

NULL.

ALGORITHM:

1. Define a struct for each node in the stack. Each node in the stack contains data and

link to the next node. TOP pointer points to last node inserted in the stack.

2. The operations on the stack are

a. PUSH data into the stack

b. POP data out of stack

3. PUSH DATA INTO STACK

a. Enter the data to be inserted into stack.

b. If TOP is NULL

i. The input data is the first node in stack.

ii. The link of the node is NULL.

iii. TOP points to that node.

c. If TOP is NOT NULL

i. The link of TOP points to the new node.

ii. TOP points to that node.

4. POP DATA FROM STACK

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

a. 4a.If TOP is NULL

i. the stack is empty

b. 4b.If TOP is NOT NULL

i. The link of TOP is the current TOP.

ii. The pervious TOP is popped from stack.

5. The stack represented by linked list is traversed to display its content.

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

class Linked_list_Stack

{

private:

struct node

{

int data;

node *next;

};

node *top;

node *entry;

node *print;

node *bottom;

node *last_entry;

node *second_last_entry;

public:

Linked_list_Stack();

void pop();

void push();

void print_list();

void show_working();

};

Linked_list_Stack::Linked_list_Stack ()

{

top=NULL;

bottom=NULL;

}

void Linked_list_Stack::push()

{

int num;

cout<<"\n\t Enter value to push onto Stack : ";

cin>>num;

entry=new node;

if(bottom==NULL)

{

entry->data=num;

entry->next=NULL;

bottom=entry;

top=entry;

}

else

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

{

entry->data=num;

entry->next=NULL;

top->next=entry;

top=entry;

}

cout<<"\n\t *** "<<num<<" is pushed onto the

Stack."<<endl;

}

void Linked_list_Stack::pop()

{

if(bottom==NULL)

cout<<"\n\t *** Error : Stack is empty. \n"<<endl;

else

{

for(last_entry=bottom;last_entry->next!=NULL;

last_entry=last_entry->next)

second_last_entry=last_entry;

if(top==bottom)

bottom=NULL;

int poped_element=top->data;

delete top;

top=second_last_entry;

top->next=NULL;

cout<<"\n\t *** "<<poped_element<<" is poped from

the Stack."<<endl;

}

}

void Linked_list_Stack::print_list()

{

print=bottom;

if(print!=NULL)

cout<<"\n\t Values pushed onto Stack are : \n"<<endl;

else

cout<<"\n\t *** Nothing to show. "<<endl;

while(print!=NULL)

{

cout<<"\t "<<print->data<<endl;

print=print->next;

}

}

void Linked_list_Stack::show_working()

{

int choice;

clrscr();

cout<<"\n\n********** Implementation of Linked List as a

Stack **********"<<endl;

cout<<"\n1.Push elements to stack"<<endl;

cout<<"2.Pop elements to stack"<<endl;

cout<<"3.Print the elements of stack"<<endl;

cout<<"4.Exit"<<endl;

do

{

cout<<"\nEnter your Choice : ";

cin>>choice;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

switch(choice)

{

case 1: push();

break;

case 2: pop();

break;

case 3: print_list();

break;

case 4: exit(0);

break;

default:

cout<<"enter the valid choice";

}

}while(1);

}

int main()

{

Linked_list_Stack obj;

obj.show_working();

return 0;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT:

RESULT:

Thus the C++ program for stack ADT using linked list was created, executed and

output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 10 PROGRAM SOURCE FILES FOR STACK APPLICATION1

Application 1: Checking well formedness of parenthesis.

STACK IMPLEMENTED AS ARRAYS (USING THE HEADER FILE OF STACK

OPERATIONS)

Step 1: Create a header file named stack.h. In this file we will declare the class and all the

stack operations. The implementation of stack is using arrays.

#define size 10

class stk_class

{

private:

/*stack structure*/

struct stack

{

char s[size];

int top;

}st;

public:

stk_class();

void push(char item);

int stempty();

char pop();

};

stk_class::stk_class()

{

st.top=-1;

}

/* the push function

input:item which is to be pished

output:none –simply pushes the item onto the stack

called by: main

calls: one

*/

void stk_class::push(char item)

{

st.top++;

st.s[st.top]=item;

}

/*

the stempty function

input:none

output:returns 1 or 0 for stack empty or not

called by:none

*/

int stk_class::stempty()

{

inr(st.top==-1)

return 1;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

else

return 0;

}

/*

the stfull function

input:none

coutput:returns 1 or 0 for stack full or not

called by :main

calls:none

*/

int stk_class::stfull()

{

if(st.top==size)

return 1;

else

return 0;

}

/*

the pop function

input:none

output:returns the item which is poped from the stack

called by: main

calls:none

*/

char stk_class::pop()

{

char item;

item=st.s[st.top];

st.top--;

return(item);

}

Step 2: Now we will create a stack application program. We have chosen an application as

“checking well formedness of parenthesis” for this application we will use stack operations.

These operations are used from the external file stack.h. Hence we will include this file in the

include file section. Here is an application program.

/**

program for checking the well formedness of the parenthesis using stack as arrays.

**/

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#include “C:\TC\INCLUDE\stack.h”

#define size 10

/*

the main function

input:none

ouput:none

called by:O.S

calls:push,pop,stempty

*/

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

void main(void)

{

char item;

char ans,bracket[10];

stk_class obj;

int i;

clrscr();

cout<”\n\t\t program for stack application using separate

header file”; cout<<”\n enter the expression and put $at

end “;

cin>>bracket;

i=0;

if(bracket[i]==’)’)

cout<<”\n the expressin is invalid”;

else

{

do

{

ile(bracket[i]==’(‘)

{

obj.push(bracket[i]);

i++;

}

while(bracket[i]==’)’)

{

item=obj.pop();

i++;

}

}

while(brackt[i]!=’$’)

if(!obj.stempty())

cout<<”\n the expression is invalid”;

else

cout<<”\n the expression has well formed

parenthesis”;

}

getch();

}

Step 3: Execute above program and following output can be obtained.

OUTPUT (RUN 1)

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT (RUN 2)

RESULT:

Thus the C++ program for balanced parentheses checking using array implementation

of stack ADT was created, executed and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

B) STACK IMPLEMENTED AS LINKED LIST(USING THE HEADER FILE OF

STACK OPERATION)

Step 1: create a header file named stack. In this file we declare the class and all the stack

operations.

The implementation of stack using linked list.

/**********************************

Stack1.h file

***********************************/
class stk_class

{

private:

/*data structure for the linked stack*/

typedef struct stack

{

char data;

struct stack * next;

}node;

node *top;

public:

stk_class();

void push(char item);

int sempty();

void pop();

};

stk_class ::stk_class()

{

top=NULL;

}

/* functionality performed on linked stack*/

void stk_class::push(char item)

{

node * New;

New=new node;

if(New==NULL)

cout<<”\n memory cannot be allocated \n”;

else

{

New->data=item;

new->next=top;

top=New;

}

}

/* the sempty function

input: any node for checking the empty condition

output:1 or 0 for empty or not condition

called by: main

calls: none

*/

int stk_class::sempty()

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

if(top==NULL)

return 1;

else

return 0;

}

/*………………………………………

the pop function

input: the top of the stack

called by: main

calls:none

……………………………………………*/

void stk_class::pop()

{

node *temp;

temp=top;

top=top->next;

delete temp;

}

Step 2: Now we will create a stack application program. We have chosen an application as

“checking well formedness of parenthesis” for this application we will use stack operations.

These operations are used from the external file stack.h. Hence we will include this file in the

include file section. Here is an application program.

/*…………………………………………………………………………………………

Program for checking the well – formedness of the parenthesis using linked stack.

……………………….………………………………………………………………..*/

/*include file section*/

#include<iostream.h>

#include<conio.h>

#include<process.h>

#include<stdlib.h>

/* Included linked stack as a header file*/

#include<"C:\TC\INCLUDE\stack1.h"

/*

the main function

input:none

output:none

called by:O.S

calls:push ,pop,sempty

*/

void main(void)

{

char ans,bracket[10];

Char data ,item;

stk_class obj;

int choice;

int I;

clrscr();

cout<<”\n\t\t enter the expression and put $ at the end

“;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cin>>bracket;

i=0;

if(bracket[i]==’)’)

cout<<”\n the expression is invalid”;

else

{

do

{

if(bracket[i]==’(‘)

{

obj.push(bracket[i]);

}

else if(bracket[i]==’)’)

{

if(obj.sempty())

{

cout<<”\n the expression is invalid”;

getch();

exit(0);

}

obj.pop();

}

i++;

}

while(bracket[i]!=’$’);

if(obj.sempty())

cout<<”\n the expression is invalid”;

else

cout<<”\n the expression has well formed

parenthesis”;

}

getch();

}

Step 3:

The above program will be executed to get output as follows

OUTPUT (RUN1)

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT (RUN 2)

RESULT:

Thus the C++ program for balanced parentheses checking using linked list

implementation of stack ADT was created, executed and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 11 PROGRAM SOURCE FILES FOR STACK APPLICATION2

Application 2: Evaluation of postfix expression.

A.USING STACK (IMPLEMENTATION AS ARRAYS)

STEP 1: create a header file named stack. In this file we declare the class and all the stack

operations.

**

stack.h

***/
#define Max 10

class stk_class

{

/*declaration of stack data structure*/

struct stack

{

double s[MAX];

int top;

}st;

public:

stk_class();

void push(double val);

double pop();

};

stk_class::stk_class()

{

st.top=0;

}

void stk_class::push(double val)

{

if(st.top+1>=MAX)

cout<<”\n stack is full”;

st.top++;

st.s[st.top]=val;

}

double stk_class::pop()

{

double val;

if(st.top==-1)

cout<<”\n stack is empty\n”;

st.top--;

return(val);l

}

STEP 2: Program to evaluate a given postfix expression .her the stack using arrays is

implemented in separate file named stack.h

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

#include<string.h>

#include<math.h>

/*included the header file as stack using array*/

#define size 80

void main()

{

char exp[size];

int len;

double result;

double post(char exp[]);

clrscr();

cout<<”enter the postfix expression\n”;

cin>>exp;

len=strlen(exp);

exp[len]=’$’;/*append $ at the end a end marker*/

result=post(exp);

cout<<”the value of the expression is”<<result;

getch();

exit(0);

}

double post(char exp[])

{

stk_class obj;

char ch,*type;

double result ,val,op1,op2;

int i;

i=0;

ch=exp[i];

while(ch!=’$’)

{

if(ch>=’0’&&ch<=’9’)

type=””operand”:

else if(ch==’+’||ch==’-‘||ch==’^’)

type=”operator”;

if(strcmp(type,”operand”)==0)/* if the character is

operator*/

{

val=ch-48;

obj.push(val);

}

else

if(strcmp(type,”operator”)==0)/* if it is operator*/

{

op2=obj.pop();

op1=obj.pop();

switch(ch)

{

case ‘+’:result=op1+op2;

break;

case ‘-‘:result=op1-op2;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

break;

case ‘*;:result=op1*op2;

break;

case ‘/’: result=op1/op2;

break;

case ‘^’:result=pow(op1,op2)

break;

}/*switch*/

obj.push(result);

}

i++;

ch=exp[i];

}/*while*/

result-obj.pop();/*pop the result*/

return(result);

}

OUTPUT:

RESULT:

Thus the given program Evaluation of postfix expression stack implemented as arrays

was executed successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

B. STACK IMPLANTED AS LINKED LIST (USE OF SEPARATE HEADER FILE

FOR STACK OPERATIONS)

STEP 1: create a header file named stack. In this file we declare the class and all the stack

operations.

/**

the stack.h file

***/
class stk_class

{

/* data structure for the linked stack*/

typedef struct stack

{

char data;

struct stack *next;

}node;

public:

node *top;

stk_class();

void push(char item);

char pop();

};

stk_class::stk_class()

{

top=NULL:

}

/* functionality performed on linked linked stack*/

void stk_class::push(char item)

{

node *New;

New=new node;

New->data =Item;

New->next=top;

top=New;

}

char stk_class::pop()

{

char item;

node *temp;

item=top->data;

temp=top;

top=top->next;

delete temp;

return item;

}

STEP 2: Program to evaluate a given postfix expression using linked stack. Here stack.h is a

user defined header file created for linked stack

#include<iostream.h>

#include<stdlib.h>

#include<string.h>

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

#include<math.h>

#include<stdlib.h>

#include<conio.h>

/* included the stack.h file (given below) for linked stack*/

#include"C:\TC\INCLUDE\thestack.h "

#define size 80

void main()

{

char exp[size];

int len;

double result;

double post(char exp[])

clrscr();

cout<<”enter the postfix expression\n”;

cin>>exp;

len=strlen(exp);

cin>>exp;

len=strlen(exp);

exp[len]=’$’;/*append $at the end as a endmarker*/

result=post(exp);

cout<<”the value of the expression is”<<result;

getch();

exit(0);

}

double post(char exp[])

{

char ch,*type;

double result ,val,oip1,op2;

int i;

stk_class obj;

i=0;

ch=exp[i];

while(ch!=’$’)

{

if(ch>=’0’&&ch<=’9’)

type=”operand”;

else if(ch==’+’||ch==’-‘||ch==’*’||ch==’/’||ch==’^’)

type=”operator”;

if(strcmp(type,”operator”)==0) /* if the character

is operand*/

{

val=ch-48;

obj.push(val);

}

else

if(strcmp(type,”operator”)==0)/*if it is operator*/

{

op2=obj.pop();

op1=obj.pop();

switch(ch)

{

case ‘+’:result=op1+op2;

break;

case ‘-‘:result=op1-op2;

break;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

case ‘*;:result=op1*op2;

break;

case ‘/’: result=op1/op2;

break;

case ‘^’:result=pow(op1,op2)

break;

}/*switch*/

obj.push(result);

}

i++;

ch=exp[i];

}/*while*/

result-obj.pop();/*pop the result*/

return(result);

}

OUTPUT:

RESULT:

Thus the given program Evaluation of postfix expression stack implemented as linked

list was executed successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO :12 QUEUE ADT USING LINKED LIST

AIM:
To write a C++ program for Queue using Linked implementation.

DESCRIPTION:

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks,

a queue is open at both its ends. One end is always used to insert data(enqueue) and the other

is used to remove data(dequeue). Queue follows First-In-First-Out methodology, i.e.,

the data item stored first will be accessed first.

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a

queue is open at both its ends. One end is always used to insert data (enqueue) and the other

is used to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the

data item stored first will be accessed first.

Queue operations may involve initializing or defining the queue, utilizing it, and then

completely erasing it from the memory. Here we shall try to understand the basic operations

associated with queues.

• enqueue () − add (store) an item to the queue.

• dequeue () − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation

efficient. These are

• peek() − Gets the element at the front of the queue without removing it.

• isfull() − Checks if the queue is full.

• isempty() − Checks if the queue is empty.

ALGORITHM:

1. Define a struct for each node in the queue. Each node in the queue

contains data and link to the next node. Front and rear pointer points to first and

last node inserted in the queue.

2. The operations on the queue are

a. INSERT data into the queue

b. DELETE data out of queue

3. INSERT DATA INTO queue

a. Enter the data to be inserted into queue.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

b. If TOP is NULL

i. The input data is the first node in queue.

ii. The link of the node is NULL.

iii. TOP points to that node.

c. If TOP is NOT NULL

i. The link of TOP points to the new node.

ii. TOP points to that node.

4. DELETE DATA FROM queue

a. If TOP is NULL

i. the queue is empty

b. If TOP is NOT NULL

i. The link of TOP is the current TOP.

ii. The pervious TOP is popped from queue.

5. The queue represented by linked list is traversed to display its content.

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

class node

{

public:

class node *next;

int data;

};

class queue : public node

{

node *head;

int front,rare;

public:

queue()

{

front=-1;

rare=-1;

}

void enqueue(int x)

{

if (rare < 0)

{

head =new node;

head->next=NULL;

head->data=x;

rare ++;

}

else

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

node *temp,*temp1;

temp=head;

if(rare >= 4)

{

cout <<"queue over flow";

return;

}

rare++;

while(temp->next != NULL)

temp=temp->next;

temp1=new node;

temp->next=temp1;

temp1->next=NULL;

temp1->data=x;

}

 }

void display()

{

node *temp;

temp=head;

if (rare < 0)

{

cout <<" queue under flow";

return;

}

while(temp != NULL)

{

cout <<temp->data<< " ";

temp=temp->next;

}

}

void dequeue()

{

node *temp;

temp=head;

if(rare < 0)

{

cout <<"queue under flow";

return;

}

if(front == rare)

{

front = rare =-1;

head=NULL;

return;

}

front++;

head=head->next;

}

};

main()

{

queue s1;

int ch;

clrscr();

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\n\n\tQUEUE USING LINKED LIST";

cout <<"\n1.enqueue\n2.dequeue\n3.DISPLAY\n4.EXIT";

while(1)

{

cout<<"\n enter your choice:";

cin >> ch;

switch(ch)

{

case 1:

cout <<"\n enter a element";

cin >> ch;

s1.enqueue(ch);

break;

case 2: s1.dequeue();

break;

case 3: s1.display();

break;

case 4: exit(0);

}

}

return (0);

}

OUTPUT:

RESULT:

Thus the C++ program for queue ADT using linked list implementation was created,

executed and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 13 QUEUE ADT USING ARRAY

AIM:
To write a program for Queue using array implementation.

DESCRIPTION:

A queue data structure can be implemented using one dimensional array. But, queue

implemented using array can store only fixed number of data values. The implementation of

queue data structure using array is very simple, just define a one dimensional array of specific

size and insert or delete the values into that array by using FIFO (First In First Out) principle

with the help of variables 'front' and 'rear'. Initially both 'front' and 'rear' are set to -1.

Whenever, we want to insert a new value into the queue, increment 'rear' value by one and

then insert at that position. Whenever we want to delete a value from the queue, then

increment 'front' value by one and then display the value at 'front' position as deleted element.

ALGORITHM:

1. Define a array which stores queue elements..

2. The operations on the queue are

a. a)INSERT data into the queue

b. b)DELETE data out of queue

3. INSERT DATA INTO queue

a. Enter the data to be inserted into queue.

b. If TOP is NULL

i. The input data is the first node in queue.

ii. The link of the node is NULL.

iii. TOP points to that node.

c. If TOP is NOT NULL

i. The link of TOP points to the new node.

ii. TOP points to that node.

4. DELETE DATA FROM queue

a. If TOP is NULL

i. the queue is empty

b. If TOP is NOT NULL

i. The link of TOP is the current TOP.

ii. The pervious TOP is popped from queue.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

5. The queue represented by linked list is traversed to display its content.

PROGRAM:

#include<iostream.h>

#include<conio.h>

#include<stdlib.h>

class queue

{

int queue1[5];

int rear,front;

public:

queue()

{

rear=-1;

front=-1;

}

void insert(int x)

{

if(rear > 4)

{

cout <<"queue over flow";

front=rear=-1;

return;

}

queue1[++rear]=x;

cout <<"inserted" <<x;

}

void delet()

{

if(front==rear)

{

cout <<"queue under flow";

return;

}

cout <<"deleted" <<queue1[++front];

}

void display()

{

if(rear==front)

{

cout <<" queue empty";

return;

}

for(int i=front+1;i<=rear;i++)

cout <<queue1[i]<<" ";

}

};

main()

{

int ch;

queue qu;

cout <<"\n1.insert 2.delete 3.display 4.exit";

while(1)

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

cout<<"\nEnter ur choice";

cin >> ch;

switch(ch)

{

case 1: cout <<"enter the element";

cin >> ch;

qu.insert(ch);

break;

case 2: qu.delet();

break;

case 3: qu.display();

break;

case 4: exit(0);

}

}

return (0);

}

OUTPUT:

RESULT:

Thus the C++ program for queue ADT using array implementation was created,

executed and output was verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 14 BINARY SEARCH TREE

AIM:
To write a C++ program for binary search tree.

DESCRIPTION:

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-

mentioned properties

The left sub-tree of a node has a key less than or equal to its parent node's key.

The right sub-tree of a node has a key greater than to its parent node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right

sub-tree and can be defined as

left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST properties.

Each node has a key and an associated value. While searching, the desired key is compared to

the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST

Basic Operations

Following are the basic operations of a tree

• Search − Searches an element in a tree.

• Insert − Inserts an element in a tree.

• Pre-order Traversal − Traverses a tree in a pre-order manner.

• In-order Traversal − Traverses a tree in an in-order manner.

• Post-order Traversal − Traverses a tree in a post-order manner.

ALGORITHM:

1. Declare function create (), search (), delete (), Display ().

2. Create a structure for a tree contains left pointer and right pointer.

3. Insert an element is by checking the top node and the leaf node and the operation will

be performed.

4. Deleting an element contains searching the tree and deleting the item.

5. Display the Tree elements.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

PROGRAM:

#include<iostream.h>

#include<conio.h>

class bintree

{

typedef struct bst

{

int data;

struct bst *left,*right;

}

node;

node *root,*New,*temp,*parent;

public:

bintree()

{

root=NULL;

}

void create();

void display();

void delet();

void find();

void insert(node *,node*);

void inorder(node *);

void search(node**,int,node **);

void del(node *,int);

};

void bintree::create()

{

New=new node;

New->left=NULL;

New->right=NULL;

cout<<"\n enter the element";

cin>>New->data;

if(root==NULL)

root=New;

else

insert(root,New);

}

void bintree::insert(node *root,node *New)

{

if(New->data<root->data)

{

if(root->left==NULL)

root->left=New;

else

insert(root->left,New);

}

if(New->data>root->data)

{

if(root->right==NULL)root->right=New;

else

insert(root->right,New);

}

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

void bintree::display()

{

if(root==NULL)

cout<<"tree is not created";

else

{

cout<<"\n the tree is: ";

inorder(root);

}

}

void bintree::inorder(node *temp)

{

if(temp!=NULL)

{

inorder(temp->left);

cout<<" "<<temp->data;

inorder(temp->right);

}

}

void bintree::find()

{

int key;

cout <<"\n enter the element which you want to search";

cin>>key;

temp=root;

search(&temp,key,&parent);

if(temp==NULL)

cout<<"\n element is not present";

else

cout<<"\n parent of node "<<temp->data<<" is"<<parent-

>data;

}

void bintree::search(node **temp,int key,node ** parent)

{

if(*temp==NULL)

cout<<endl<<" tree is not created"<<endl;

else

{

while(*temp!=NULL)

{

if((*temp)->data==key)

{

cout<<"\n the "<<(*temp)->data<<" element

is present";

break;

}

*parent=*temp;//stores the parent value

if((*temp)->data>key)

*temp=(*temp)->left;

else

*temp=(*temp)->right;

}

}

return;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

void bintree::delet()

{

int key;

cout<<"\n enter the element you want to delete";

cin>>key;

if(key==root->data)

{

bintree();// assigning a value NULL to root

}

else

del(root,key);}

void bintree::del(node *root,int key)

{

node *temp_succ;

if(root==NULL)

cout<<" tree is not created";

else

{

temp=root;

search(&temp,key,&parent);

if(temp->left!=NULL&&temp->right!=NULL)

{

parent=temp;

temp_succ=temp_succ->left;

while(temp_succ->left!=NULL)

{

parent=temp_succ;

temp_succ=temp_succ->left;

}

temp->data=temp_succ->data;

temp->right=NULL;

cout<<" now deleted it!";

return;

}

if(temp->left!=NULL&&temp->right==NULL)

{

if(parent->left==temp)

parent->left=temp->left;

else

parent->right=temp->left;

temp=NULL;

delete temp;

cout<<" now deleted it!";

return;

}

if(temp->left==NULL&&temp->right!=NULL)

{

if(parent->left==temp)

parent->left=temp->right;

else

parent->right=temp->right;

temp=NULL;

delete temp;

cout<<" now deleted it!";

return;

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

}

/*deleting a node which is having no child*/

if(temp->left==NULL&&temp->right==NULL)

{

if(parent->left==temp)

parent->left=NULL;

else

parent->right=NULL;

cout<<" now deleted it!";

return;

}

}

}

void main()

{

int choice;

char ans='N';

bintree tr;

clrscr();

cout<<"\n\t program for binary search tree";

cout<<"\n1.create\n2.search\n3.delete\n4.display";

do

{

cout<<"\n\n enter your choice:";

cin>>choice;

switch(choice)

{

case 1:do

{

tr.create();

cout<<"do you want to enter more elements:

(y/n)"<<endl;

ans=getche();

}

while(ans=='y');

break;

case 2:tr.find();

break;

case 3:

tr.delet();

break;

case 4:

tr.display();

break;

}

}

while(choice!=5);

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT:

RESULT:

Thus the C++ program for binary search tree was created, executed and output was

verified successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX. NO: 15 HEAP SORT

AIM:

To write a c program to perform heap sort.

DESCRIPTION:

Heap is a special case of balanced binary tree data structure where the root-node key

is compared with its children and arranged accordingly. If α has child node β then

key(α) ≥ key(β)

As the value of parent is greater than that of child, this property generates Max Heap.

Based on these criteria, a heap can be of two types.

Min-Heap − Where the value of the root node is less than or equal to either of its

children.

Max-Heap − Where the value of the root node is greater than or equal to either of its

children.

ALGORITHM:

1. Get the size of the array from the user.

2. Get the elements to be sorted.

3. Build a heap.

4. Sort the heap in ascending order.

5. Now the array is contained with sorted elements.

6. Display the sorted elements.

PROGRAM:

#include <iostream.h>

#include <conio.h>

void main()

{

clrscr();

int a[50],size; int p,c;

cout<<"Enter the Size of an Array :"; cin>>size;

cout<<"Enter Value of A[1] :"; cin>>a[1];

for(int i=2;i<=size;i++)

{

cout<<"Enter Value of A["<<i<<"] :"; cin>>a[i];

p=i/2;

c=i;

while(1)

{

if(a[c] > a[p])

{

int t=a[c]; a[c]=a[p]; a[p]=t;

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

c=p;

p=p/2;

if(p<1)

{

break;

}

}

}

cout<<endl<<"Heap ..."<<endl;

 for(i=1;i<=size;i++)

{

cout<<endl;

cout<<"Arr["<<i<<"] :"<<a[i];

}

int j=size;

int lc,rc;

while(j>1)

{

if(a[1] > a[j])

{

int t=a[1];

a[1]=a[j];

a[j]=t;

j--;

}

else

{

j--;

continue;

}

p=1;

while(p < j)

{

lc=p*2;

rc=p*2 + 1;

if(lc>=j || rc >=j)

{

break;

}

if(a[p] < a[lc] && a[lc] > a[rc])

{

int temp=a[lc];

a[lc]=a[p];

a[p]=temp;

p=lc;

}

else if (a[p] < a[rc] && a[rc] > a[lc])

{

int temp=a[rc];

a[rc]=a[p];

a[p]=temp;

p=rc;

}

else

{

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

break;

}

}

}

cout<<endl<<"\nSorted List ..."<<endl;

for(i=1;i<=size;i++)

{

 cout<<endl;

cout<<"Arr["<<i<<"] :"<<a[i];

}

getch();

}

OUTPUT:

RESULT:

Thus the C++ program for heapsort was created, executed and output was verified

successfully.

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

EX.NO: 16 QUICK SORT

AIM:

To write a c program to perform quick sort.

DESCRIPTION:

Quick Sort, as the name suggests, sorts any list very quickly. Quick sort is not stable

search, but it is very fast and requires very less additional space. It is based on the rule

of Divide and Conquer (also called partition-exchange sort). This algorithm divides the list

into three main parts:

• Elements less than the Pivot element

• Pivot element

• Elements greater than the pivot element

ALGORITHM:

1. Get the value of how many no. to be sorted.

2. Get the elements from the user.

3. Two function quicksort() and swap(). Quick sort to perform sorting.

4. Swap() is just to rearrange the values.

5. Quick sort algorithm works by partitioning the array to be sorted, then recursively

sorting each partition.

6. Display the sorted value.

PROGRAM:

#include <iostream.h>

#include <conio.h>

void swap(long &,long &);

void quick_sort(long [],int,int);

main()

{

clrscr();

const int array_size=10;

long array[array_size]={0};

cout<<" \n\n*********************** Quick Sort

******************"<<endl;

cout<<"\n * Array size = 10"<<endl;

cout<<" * Data Type = long"<<endl;

cout<<" Enter the array : "<<endl<<endl;

for(int count_1=0;count_1<array_size;count_1++)

 {

cout<<"\t Element["<<count_1<<"] = ";

cin>>array[count_1];

}

quick_sort(array,0,array_size-1);

cout<<" \n\nSorted Array : \n\n";

for(int count_2=0;count_2<array_size;count_2++)

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

{

cout<<"\tElement["<<count_2<<"] =

"<<array[count_2]<<endl;

}

cout<<" \n\n\n***************************************";

getch();

return 0;

}

void swap(long &element_1,long &element_2)

{

long temp=element_1;

element_1=element_2;

element_2=temp;

}

void quick_sort(long array[],int first,int last)

{

if(first>=last)

{

}

else

{

int middle=array[last];

int count_1=first-1;

int count_2=last;

while(count_1<count_2)

{

do

{

count_1++;

}

while(array[count_1]<middle);

do

{

count_2--;

}

while(count_2>=0 && array[count_2]>middle);

if(count_1<count_2)

swap(array[count_1],array[count_2]);

}

swap(array[count_1],array[last]);

quick_sort(array,first,count_1-1);

quick_sort(array,count_1+1,last);

}

}

 EC6312 OOPS AND DATA STRUCTURES LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VVIT

OUTPUT:

RESULT:

Thus the C++ program for quick sort was created, executed and output was verified

successfully.

