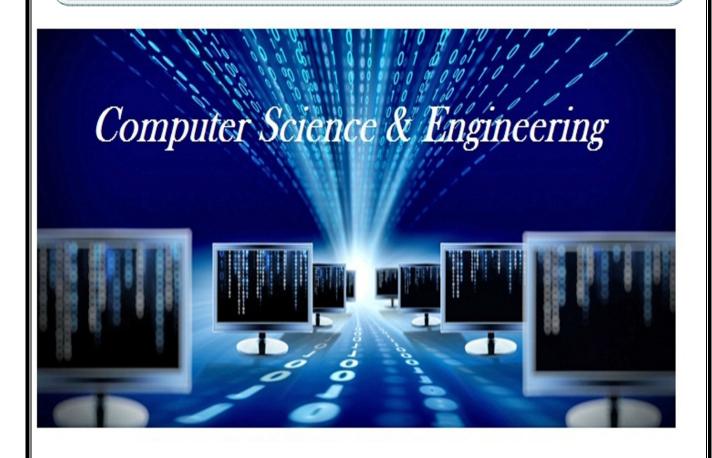


# Varuvan Vadivelan Institute of Technology


# LAB MANUAL

Regulation : 2013

Branch : B.E. – All Branches

Year & Semester : I Year / I Semester

GE6161 - COMPUTER PRACTICES LAB



#### ANNA UNIVERSITY: CHENNAI

#### **REGULATION - 2013**

#### **GE6161 - COMPUTER PRACTICES LABORATORY**

# **LIST OF EXPERIMENTS:**

- 1. Search, generate, and manipulate data using MS office / Open Office
- 2. Presentation and Visualization graphs, charts, 2D, 3D
- 3. Problem formulation, Problem Solving and Flowcharts
- 4. C Programming using Simple statements and expressions
- 5. Scientific problem solving using decision making and looping.
- 6. Simple programming for one dimensional and two dimensional arrays.
- 7. Solving problems using String functions
- 8. Programs with user defined functions Includes Parameter Passing
- 9. Program using Recursive Function and conversion from given program to flow chart.
- 10. Program using structures and unions.

**TOTAL PERIODS: 45** 

# **INDEX**

| S.NO            | DATE | TITLE                                         | SIGNATURE OF THE<br>STAFF | REMARKS |  |  |  |
|-----------------|------|-----------------------------------------------|---------------------------|---------|--|--|--|
| MICROSOFT WORD  |      |                                               |                           |         |  |  |  |
| 1               |      | Creating Advertisement                        |                           |         |  |  |  |
| 2               |      | Curriculum Vitae                              |                           |         |  |  |  |
| 3               |      | Scientific Notations                          |                           |         |  |  |  |
| 4               |      | Creating Timetable and Conversion             |                           |         |  |  |  |
| 5               |      | Mail merge and Letter preparation             |                           |         |  |  |  |
| 6               |      | Drawing flowchart                             |                           |         |  |  |  |
| MICROSOFT EXCEL |      |                                               |                           |         |  |  |  |
| 7               |      | Spread sheet chart<br>(Line, XY, Bar and Pie) |                           |         |  |  |  |
| 8               |      | Spread sheet formula editor                   |                           |         |  |  |  |

# **INDEX**

| S.NO       | DATE | TITLE                                     | SIGNATURE<br>OF THE<br>STAFF | REMARKS |  |  |
|------------|------|-------------------------------------------|------------------------------|---------|--|--|
| C PROGRAMS |      |                                           |                              |         |  |  |
| 9          |      | Area and Circumference of the Circle      |                              |         |  |  |
| 10         |      | Ternary operator                          |                              |         |  |  |
| 11         |      | Finding the roots of quadratic equation   |                              |         |  |  |
| 12         |      | Armstrong number                          |                              |         |  |  |
| 13         |      | Factorial of a number                     |                              |         |  |  |
| 14         |      | Fibonacci Series                          |                              |         |  |  |
| 15         |      | Sum of the digits, Reverse and Palindrome |                              |         |  |  |
| 16         |      | Pascal's Triangle                         |                              |         |  |  |
| 17         |      | Matrix Multiplication                     |                              |         |  |  |
| 18         |      | String Concatenation                      |                              |         |  |  |
| 19         |      | String Comparison                         |                              |         |  |  |
| 20         |      | String Copy                               |                              |         |  |  |
| 21         |      | String Length                             |                              |         |  |  |
| 22         |      | Payroll processing using Union            |                              |         |  |  |
| 23         |      | Employee details using Structure          |                              |         |  |  |
| 24         |      | Call by value and call by reference       |                              |         |  |  |

# **INTRODUCTION**

# **Basic Concepts of C:**

C was originally developed by Dennis Ritchie between 1969 and 1973 at Bell Labs, and used to re-implement the Unix operating system. It is the most widely used programming languages of all time. C has been standardized by the American National Standards Institute (ANSI) since 1989 and subsequently by the International Organization for Standardization (ISO).

## **Uses of C language:**

- Database Systems
- **\Delta** Language Interpreters
- Compilers and Assemblers
- Operating Systems
- Network Drivers
- **❖** Word Processors

## Features of C language:

- C is robust language with rich set of built-in functions and operators
- Programs written in C are efficient and fast.
- C is highly portable.
- C is basically a collection of C library functions.
- C is easily extensible.

## C Data Types:

| Primary Data Types | Secondary Data Types |
|--------------------|----------------------|
| ✓ Character        | Array                |
| ✓ Integer          | Pointer              |
| ✓ Float            | Structure            |
| ✓ Double           | Union                |
| ✓ Void             | Enum                 |

## C supports following conditional statements:

- (i) if statement
- (ii) if else statement
- (iii)else if statement
- (iv)switch statement

# C supports following types of loops:

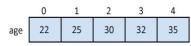
- (i) while loops
- (ii) do while loops
- (iii) for loops

## **C Functions:**

C function is a self contained block of statements that can be executed repeatedly whenever we need it.

- > Provides modularity.
- > Provides reusable code.
- > Debugging and editing tasks are easy
- > Programs can be modularized into smaller parts

## Two types of functions in C:


Built in(Library) Functions

**User Defined Functions** 

#### **C Arrays:**

An array is a data structure in C, that can store a fixed size sequential collection of elements of same data type. There are three types of arrays:

- ✓ One-dimensional array
- ✓ Two-dimensional array
- ✓ Multi-dimensional array



A pictorial representation of the array:

# **C Strings:**

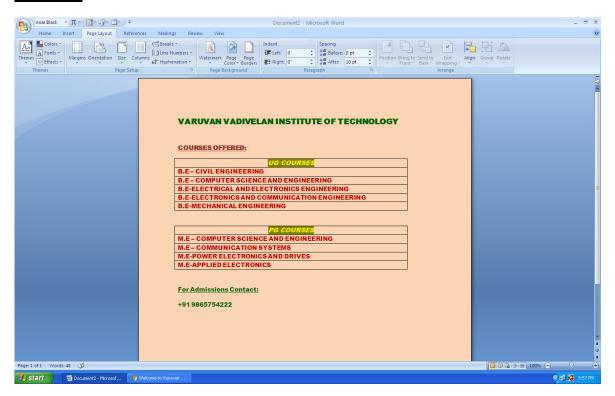
In C, the one-dimensional array of characters are called strings, which is terminated by a null character '\0'.

Date:

# **CREATING ADVERTISEMENT**

## AIM:

To prepare an advertisement for a company with some specifications.


- > Attractive page border.
- ➤ Use at least one Clip Art.
- > Design name using Word Art.
- > Use bullets.

## **ALGORITHM:**

- **Step 1**: Open a new word document using File  $\rightarrow$  New option.
- Step 2: Go to Page Layout  $\rightarrow$  Page Borders, under the Page border tab choose the appropriate style and color, etc, and click OK.
- **Step 3**: Go to Page Layout  $\rightarrow$  Page Color, choose the appropriate color.
- **Step 4**: Go to Insert → Clip Art, search for a relevant picture from the collections and insert it in to the page.
- **Step 5**: Go to Insert → Word Art, choose the appropriate style from the list, type the company name and click OK.
- **Step 6**: Type the company details in the document and do the following steps for various styles.
- **Step 7**: For bullets and numbering, select the appropriate style from the menu and apply to the paragraph.
- **Step 8**: For alignment, select the particular word or statement or paragraph in the document then press CTRL+L (left) or CTRL+R (right) or CTRL+E (center) or CTRL+J (justify) or select the relevant button from the formatting toolbar.
- **Step 9**: For bold facing, select the particular word or statement or paragraph then press CTRL+B or select the on the formatting toolbar.
- **Step 10:** For italic style, select the particular word then press CTRL+I or select the on the formatting toolbar..

.

# **OUTPUT:**



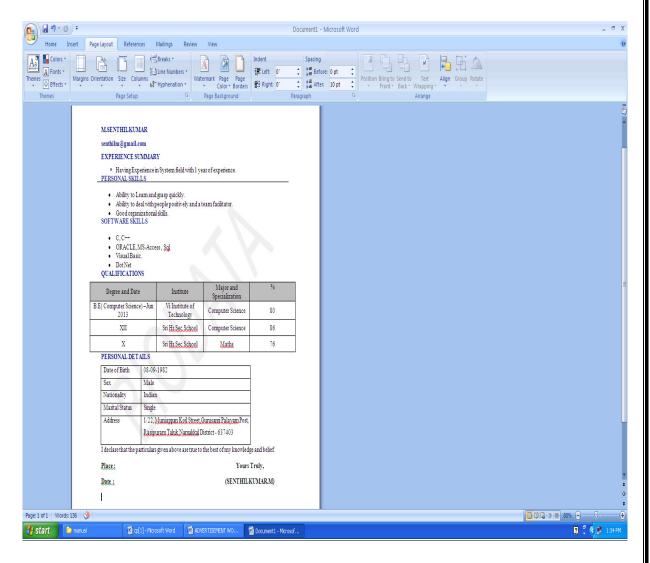
# **RESULT:**

Thus the advertisement has been created with some specifications in Microsoft word successfully and verified.

Date:

# **CURRICULUM VITAE**

## AIM:


To create curriculum vitae (CV) of a B.E graduate with the specification.

- > Table to show qualifications with heading.
- ➤ Left & Right margins
- > Page numbers in the footer on the right side.
- Use Watermark.

## **ALGORITHM:**

- Step 1: Open a blank document.
- **Step 2:** Type a Bio-data briefly then goto Insert → Table → Insert → Table → Select number of rows & columns → Ok for qualifications.
- **Step 3:** Go to Page Layout→Margins→Assign→Left & Right Margins
- **Step 4:** Go to Insert  $\rightarrow$  Page Numbers  $\rightarrow$  Select footer on the right side  $\rightarrow$  Ok.
- **Step 5:** Go to Page Layout→Watermark→Customize text as Bio-data→Ok.
- **Step 6:** Save the Document.

# **OUTPUT:**



## **RESULT:**

Thus the curriculum vitae (CV) has been created with some specifications in Microsoft word successfully and verified.

Date:

# **SCIENTIFIC NOTATIONS**

AIM:

To create a MS-WORD document for the following scientific notation

i. 
$$A = a_0^2 + a_1^2 + b_0^2 + b_1^{-4}$$

ii. 
$$x_1 y_1 + x \frac{(y+z)^2}{x^2+y^2}$$

iii. 
$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

iv. 
$$T(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} t_{ij} x_{ij}$$

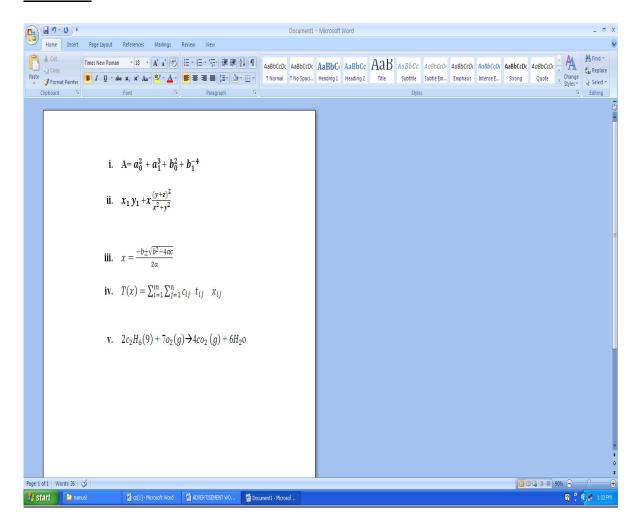
v. 
$$2c_2H_6(9) + 7o_2(g) \rightarrow 4co_2(g) + 6H_2o$$

.

**ALGORITHM:** 

Step 1: Open a blank document.

Step 2: Go to Insert → Equation → Insert Equation → Select the specific


format. For eg , 
$$e^x$$
 for  $a^2$ ,  $a^{-4}$ 

Step 3: Select 
$$\sum$$
 for  $\sum_{i=1}^{m} \sum_{j=1}^{n}$ 

Step 4: Select — for 
$$\frac{x(y+z)^2}{x^2+y^2}$$

**Step 5**: Save the document.

# **OUTPUT:**



## **RESULT:**

Thus the scientific notations has been created in Microsoft word successfully and verified.

Date:

# **CREATING TIME TABLE & CONVERSION**

## AIM:

To prepare a class timetable using Merge rows, Split row, Insert rows, columns and convert the table into text format.

# **ALGORITHM:**

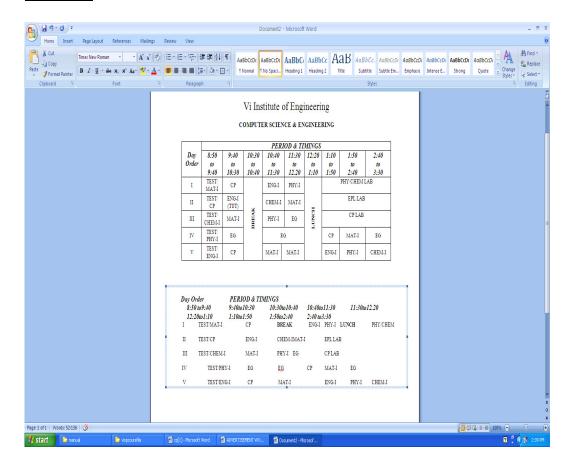
Step1: Open a blank document.

**Step 2:** Insert → Table → Insert Table → Select No of rows & columns → Ok.

**Step 3**: Select two cells Right click → Merge Cells.

Select one cell Right click→Split Cell

Select one row Right click →Insert →Insert One row above or below


Select one column Right click →Insert→Insert One column left or right

**Step 4**: Type a Class Timetable with Headings

**Step 5**: Go to Layout→Convert to text→Select Tabs→ Ok

**Step 6:** Save the document as Table and Text Format

# **OUTPUT:**

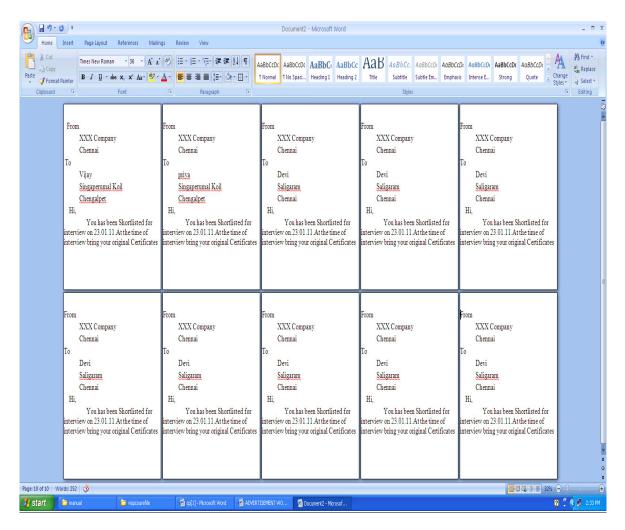


## **RESULT**

Thus the class time table has been created & table is converted into text in Microsoft word successfully and verified.

Date :

# MAIL MERGE & LETTER PREPARATION


## AIM:

To create a WORD document to call letters for an interview using Mail Merge send to 10 candidates

# **ALGORITHM:**

- **Step 1:** Open a blank document
- **Step 2**: Goto Mailings in Menu → Start Mail merge → Letters
- **Step 3**: Type a interview call letter with FROM address and leave some Space for TO address
- Step 4: Goto → Select recipients → Type a new list → Customize the Columns → Ok
- Step 5: Type a 10 address new some fields  $\rightarrow$  ->Ok $\rightarrow$  ->save it
- **Step 6**: Goto → Select recipients → Use Existing list → open a file → ->Ok
- **Step 7**: Under the TO Address insert the Merge fields & preview the results
- **Step 8**: Goto Finish Merge->Edit individual Documents → All →Ok
- **Step 9**: Save the document

## **OUTPUT:**



# **RESULT:**

Thus the Mail Merge has been created in Microsoft word successfully and Verified.

Date :

# **DRAWING FLOW CHART**

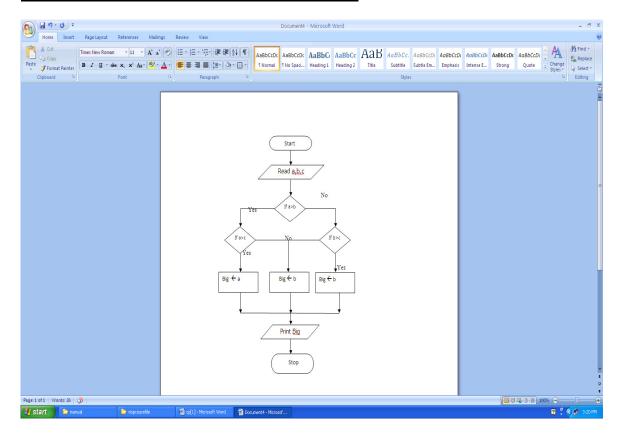
# AIM:

To create a flowchart in WORD to find the greatest of three numbers

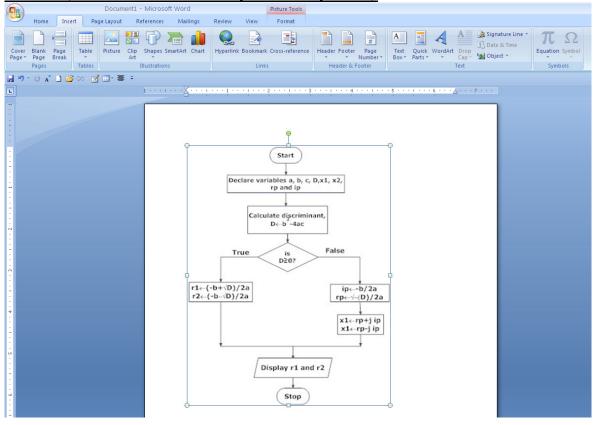
# **ALGORITHM:**

Step 1: Open a blank document

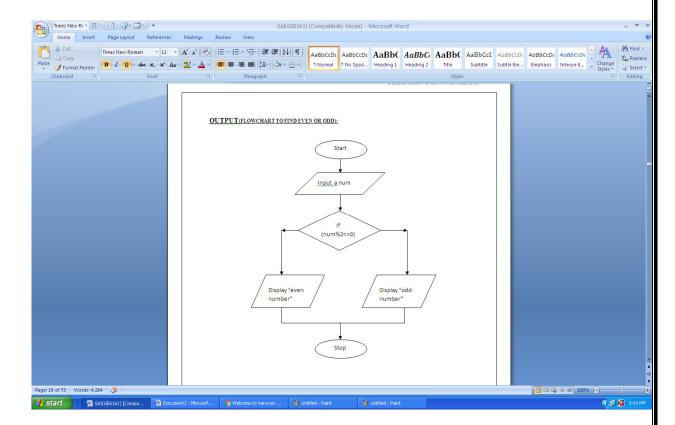
**Step 2:** Go to Insert  $\rightarrow$  shapes  $\rightarrow$  Flowchart


**Step 3:** Insert the Correct shapes for Input box, decision box, Calculation box and Output box

**Step 4:** Select the box and Right Click → Add Text


**Step 5**: Use Arrows for Link

**Step 6**: Save the document


#### **OUTPUT**(FLOWCHART FOR BIGGEST OF TWO NUMBERS):



#### **OUTPUT**(FLOWCHART FOR ROOTS OF QUADRATIC EQUATION):



# **OUTPUT**(FLOWCHART TO FIND EVEN OR ODD):

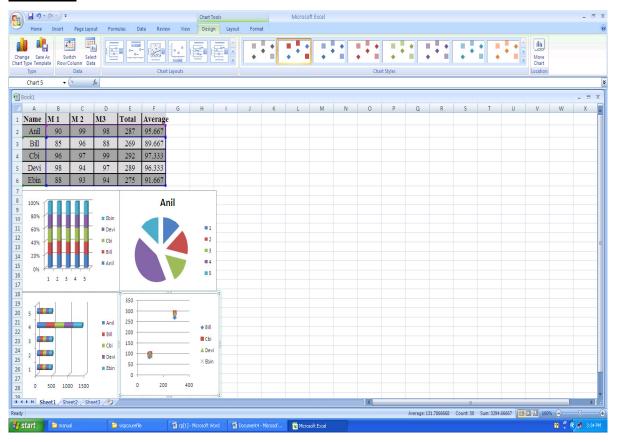


# **RESULT:**

Thus the flowchart has been drawn using Ms-word successfully and verified.

Date:

# **SPREAD SHEET CHART (Line, XY, Bar and Pie)**


# AIM:

To create a EXCEL to analyze the marks of the students of a class using various Chart (Line,XY,Bar and Pie).

## **ALGORITHM:**

- **Step 1:**. Open a Microsoft Excel Worksheet.
- **Step 2:** Place the Cursor on the desired cell and start entering the required Student details
- **Step 3:** To find the Total and Average using formula (Total = m1+m2+m3) Average = (Total / 3)
- **Step 4:** Select the table and goto Insert → Chart → Choose one type of Chart
- Step 5: Reselect the table again and Insert → Chart → Choose anothertype of Chart. Repeat these steps for all types of charts.

# **OUTPUT:**



# **RESULT:**

Thus the Spreadsheet charts (Line,XY,Bar and Pie) for students marks has been created Successfully and verified.

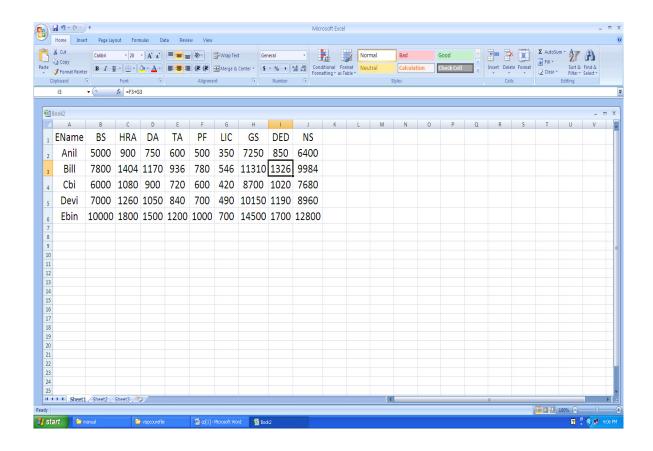
Date :

# **SPREAD SHEET FORMULA EDITOR**

#### AIM:

To create a spreadsheet to calculate HRA, DA, TA, PF, LIC. Gross Salary , Net Salary from the below given data

HRA=18% of basic Pay TA=12% of Basic Pay DA=15% of Basic Pay


PF =10% of Basic Pay LIC =7% of Basic Pay Deduction= PF + LIC

Gross Salary = Basic Pay + HRA + DA + TA Net Salary = Gross Salary - Deduction

#### **ALGORITHM:**

- **Step 1.** Open a Microsoft Excel Worksheet
- Step 2. Type the details about the employees and Basic Salary.
- Step 3. For HRA & DA, move to corresponding row & column and assign the formula =18/100\* BS (row & column) For DA, move to corresponding row & column and assign the formula =15/100\* BS (row & column)
- **Step 4.** For TA & PF, move to corresponding row & column and assign the formula =12/100\* BS (row & column) For PF, move to corresponding row & column and assign the formula =10/100\* BS (row & column)
- **Step 5.** For LIC & GS, move to corresponding row & column and assign the formula =7/100\* BS,For GS ,move to corresponding row & column and assign the formula = Basic Pay + HRA + DA + TA
- **Step 6.** Likewise for Deduction and Net Salary
- **Step 7.** Save the ExcelSheet
- **Step 8.** Stop the program

# **OUTPUT**



# **RESULT:**

Thus the Spreadsheet to calculate HRA, DA, TA, PF, LIC. Gross Salary, Net Salary from the given data has been created Successfully and verified.

Ex. No: 9
Date:

# AREA AND CIRCUMFERENCE OF THE CIRCLE

## AIM:

To write a C program to find the area and circumference of the circle

# **ALGORITHM:**

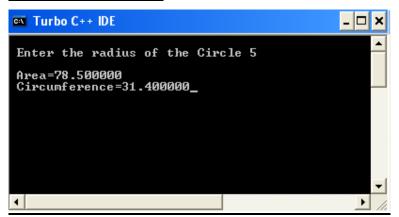
**Step 1:** Start the program.

**Step 2:** Input the radius of the Circle.

Step 3: Find the area and circumference of the circle using the formula

```
Area = 3.14*r*r
```

Circum=2\*3.14\*r


**Step 4:** Print the area and Circumference

**Step 5:** Stop the Program

# PROGRAM: (AREA AND CIRCUMFERENCE OF THE CIRCLE)

```
#include<stdio.h>
#include<conio.h>
void main()
{
    float r,area,circum;
    clrscr();
    printf("\n Enter the radius of the Circle");
    scanf("%f",&r);
    area=3.14*r*r;
    circum=2*3.14*r;
    printf("\n Area=%f",area);
    printf("\n Circumference=%f",circum);
    getch();
}
```

# **INPUT AND OUTPUT:**



# **RESULT:**

Thus the C program to find the area and circumference of the circle has been created successfully and verified.

```
Ex. No : 10

Date :
```

## **TERNARY OPERATOR**

#### AIM:

To write a C program to check the largest number among given two numbers.

## **ALGORITHM:**

```
Step 1: Start the program
Step 2: Declare the necessary variables.
Step 3: Check if(a > b)
Step 4: If true Print a.
Step 5: Otherwise, Print b
Step 6: Stop the program
```

## **PROGRAM:** (TERNARY OPERATOR)

```
#include<stdio.h>
#include<conio.h>
void main()
{
  int a,b,big; clrscr();
  printf("Enter the value of a: ");
  scanf("%d",&a);
  printf("Enter the value of b");
  scanf("%d",&b);
  big=(a>b)?a:b;
  printf("Biggest of the given numbers is %d",big);
  getch();
}
```

# **INPUT AND OUTPUT:**

```
Enter the value of a: 5
Enter the value of b 10
Biggest of the given numbers is 10
```

# **RESULT:**

Thus the program for Conditional Statements has been executed successfully and the output was verified.

Date:

# FINDING THE ROOTS OF QUADRATIC EQUATION

# AIM:

To write a C Program to find the roots of a Quadratic equation.

# **ALGORITHM:**

Step 1: Start

Step 2: Read the variable a, b, c.

**Step 3:**Compute d= b\*b - 4\*a\*c.

**Step 4**: Test the condition, d is greater than 0 using IF statement.

Calculate: r1 = (-b + sqrt(d)) / (2\*a).

Calculate: r2 = (-b - sqrt(d)) / (2\*a).

Print the roots r1 and r2.

**Step 5:**Else, test the condition, d is equal to 0 using IF statement.

Calculate: r1=r2 = -b / (2\*a).

Print the roots r1 and r2.

Step 6: Else, compute real and imaginary as

Calculate: real = -b / (2\*a).

Calculate imag = sqrt(-d)/(2\*a).

Print the real and imag.

Step 7: Stop

#### **PROGRAM:** (FINDING THE ROOTS OF QUADRATIC EQUATION)

```
#include <stdio.h>
#include <math.h>
#include <conio.h>
void main()
     float a, b, c, d, r1,r2, real, imag; clrscr();
     printf("\nTO FIND THE ROOTS OF A QUADRATIC EQUATION");
     printf("\nEnter the coefficients a, b and c: ");
     scanf("%f%f%f", &a, &b, &c);
     d=b*b-4*a*c;
     if (d>0)
     {
          r1= (-b+sqrt(d))/(2*a);
          r2= (-b-sqrt(d))/(2*a);
          printf("Roots are: %.2f and %.2f.They are real and
          distinct.", r1 , r2);
     }
     else if (d==0)
     {
          r1 = r2 = -b/(2*a);
          printf("Roots are: %.2f and %.2f. They are real and
          equal.", r1, r2);
     }
     else
     {
          real= -b/(2*a);
          imag = sqrt(-d)/(2*a);
          printf("Roots are: %.2f+%.2fi and %.2f-%.2fi. They
          are complex.", real, imag, real, imag);
     }
     getch();
     }
```

# **INPUT AND OUTPUT:**

```
TO FIND THE ROOTS OF A QUADRATIC EQUATION
Enter the coefficients a, b and c: 2 3 4
Roots are: -0.75+1.20i and -0.75-1.20i. They are complex._
```

# **RESULT:**

Thus the C program for finding roots of quadratic equation was executed and output was obtained.

```
Ex. No: 12
Date:
```

# **ARMSTRONG NUMBER**

#### AIM:

To write a C Program to check whether the given number is Armstrong or not.

## **ALGORITHM:**

```
Step 1: Start the program

Step 2: Read the variable N

Step 3: Assign N1=N;

Step 4: Create Set a loop using the condition WHILE(N1!=0), if the condition true REM=N1%10;

NUM=NUM+REM*REM*REM;

N1=N1/10;

Step 5: Else, check the condition IF(NUM=N), if the condition true

Step 6: PRINT "Armstrong Number"

Step 7: Else PRINT "Not Armstrong Number"

Step 8: Stop the program
```

## PROGRAM: (ARMSTRONG NUMBER)

```
#include <stdio.h>
#include <conio.h>
void main()
{
    int n, n1, rem, num=0; clrscr();
    printf("\nPRG TO CHECK WHETHER A GIVEN NO. IS
    ARMSTRONG NO. OR NOT");
    printf("Enter a positive integer: ");
    scanf("%d", &n);
    n1=n;
    while(n1!=0)
    {
        rem=n1%10;
    }
}
```

```
num=num+(rem*rem*rem);
n1=n1/10;
}
if(num==n)
printf("%d is an Armstrong number",n);
else
printf("%d is not an Armstrong number",n);
getch();
}
```

# **OUTPUT:**



## **RESULT**

Thus the C program to check whether the given number is Armstrong or not was executed and the output was obtained.

Date:

# **FACTORIAL OF A NUMBER**

## AIM:

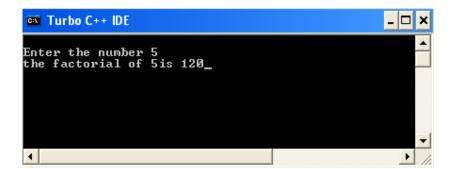
To write a program to calculate the factorial of the given number using functions.

# **ALGORITHM:**

```
Step 1: Start the program
```

**Step2:** Enter a number.

**Step 3:** Set a loop to find the factorial of the given no using Fact=fact\*i


**Step 4:** Print the factorial of the given number.

**Step 5:** Stop the program

## PROGRAM: (FACTORIAL OF A NUMBER)

```
#include<stdio.h>
void main()
{
    int fact=1,i,num;
    printf("Enter the number");
    scanf("%d",&num);
    for(i=1;i<=num;i++)
    {
        fact=fact*i;
    }
    printf("the factorial of %dis %d",num,fact);
    getch();
}</pre>
```

# **INPUT AND OUTPUT:**



# **RESULT:**

Thus the C program to calculate factorial of the given number using function is calculated successfully and verified.

Date:

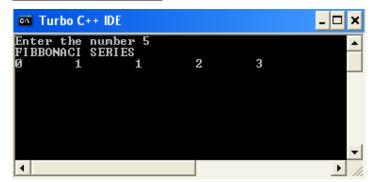
# **FIBONACCI SERIES**

# AIM:

To write a C program to find the Fibonacci series of the given number.

## **ALGORITHM:**

- **Step 1.** Start the program
- **Step 2.** Enter the number.
- **Step 3.** Check the number whether the number is zero or not.


If zero print zero value. If not zero go further.

- **Step 4**. Set a loop upto the given number.
- **Step 5**. Assign fib=fib+a; a=b; b=c;
- **Step 6**. Every increment in the loop prints the value of fib.
- **Step 7.** After the execution of the loop, stop the program.

#### **PROGRAM:** (FIBONACCI SERIES)

```
#include<stdio.h>
#include<conio.h>
Void main()
           int num, fib=0, a=0, b=1, i;
           clrscr();
           printf("Enter the number");
           scanf("%d", &num);
           printf("FIBBONACI SERIES\n");
           if(num==0)
           printf("0");
           else
           {
                for(i=0;i<num;i++)</pre>
                      fib=fib+a;
                      a=b;b=fib;
                      printf("%d\t",fib);
                      getch();
                }
           }
     }
```

# INPUT AND OUTPUT



# **RESULT:**

Thus the C program to find Fibonacci series of the given number was executed and verified successfully.

Date:

# SUM OF DIGITS, REVERSE, PALINDROME

#### AIM:

To write a C program to find the sum & reverse of digits and Check is Palindrome or not

### **ALGORITHM:**

- **Step 1.** Start the program
- **Step 2.** Enter the number.
- **Step 3.** Set a loop upto the number is not equal to zero.


Rem←num%10 Sum←Sum+rem Rnum← rnum \*10 +rem Num← num/10

- **Step 4.** After the end of the loop print the sum and reverse no of the digit.
- **Step 5.** Find whether the reverse no is equal to the input number. If equal, then it is Palindrome.
- **Step 6.** Stop the program.

#### **PROGRAM**: (SUM OF DIGITS, REVERSE, PALINDROME)

```
#include<stdio.h>
#include<conio.h>
void main()
     unsigned long int a, num, sum=0, rnum=0, rem;
     clrscr();
     printf("\n Enter the No:");
     scanf("%ld", &num);
     a=num;
     while (num!=0)
          rem=num%10;
          sum=sum+rem;
          rnum=rnum*10+rem;
          num=num/10;
     printf("\n The Sum of Digits %ldis=%ld\n",a,sum);
     printf("\n The Reverse %ld is=%ld\n",a,rnum);
     if (a==rnum)
     printf("\n The Given number is a Palindrome");
     printf("\n The Given number is not a Palindrome");
     getch();
}
```

# INPUT AND OUTPUT



# **RESULT**

Thus the C program to find the sum & reverse of digits and to check whether it is Palindrome or not was executed and verified successfully.

```
Ex. No: 16
```

Date:

# **PASCAL'S TRIANGLE**

### AIM:

To write a C program to print Pascal's triangle.

### **ALGORITHM:**

```
Step 1: Start the program
```

Step 2: Read input n.

**Step 3:** Create the first loop to print n lines.

Step 4: Check l<= n

**Step 5:** Create the second loop to generate 40 spaces initially, then reduce by 40-3\*1 equation.

Step 6: Check i>0

**Step 7:** Create the third loop to generate and print digits.

Step 8: Use m=m\*(l-j+1)/j to print digits in each line.

**Step 9**: Stop the execution.

### **PROGRAM:** (PASCAL'S TRIANGLE)

```
#include<stdio.h>
#include<conio.h>
main()
     int i, j, l, m, n;
     clrscr();
     printf("How many rows?\n");
     scanf("%d", &n);
     printf("\n\t\t\t Pascal's Triangle\n");
     m=1;
     for (1=0;1<n;1++)
           for (i=40-3*1; i>0; i--)
          printf(" ");
           for(j=0;j<=1;j++)
                if((j==0)||(1==0))
                m=1;
                else
                m = (m*(1-j+1))/j;
                printf("%6d",m);
          printf("\n");
     getch();
}
```



# **RESULT**

Thus the C program has been written to print the Pascal's triangle and the output was verified.

Date:

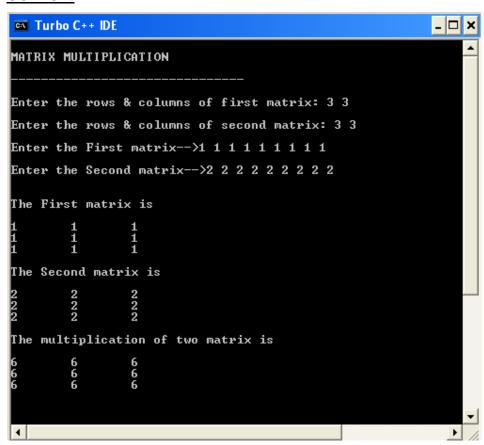
# **MATRIX MULTIPLICATION**

### AIM:

To write a C program to perform Matrix Multiplication using array.

### **ALGORITHM:**

- **Step 1:** Start the program
- **Step 2:** Declare variables
- **Step 3:** Get the rows and columns of two matrices M, N, O, P respectively.
- **Step 4:** Check N is not equal to O, if go to step 10.
- **Step 5:** Set a loop and get the elements of first matrix A[i][i].
- **Step 6:** Set a loop and get the elements of second matrix B[i][j].
- **Step 7:** Repeat the step 6 until i<m, j<p and k<n.
- **Step 8:** Initialize C[i][j]=0 and multiply the two matrices and store the resultant in C[i][j]=C[i][j]+A[i][k]\*B[k][j].
- **Step 9:** Print the resultant matrix C[i][j] and go to step 11.
- **Step 10:** Print the message "Column of first matrix must be same as row of second matrix".
- **Step 11:** Stop the program.


#### **PROGRAM: (MATRIX MULTIPLICATION)**

```
#include<stdio.h>
#include<conio.h>
#include<stdio.h>
void main()
     int a[10][10],b[10][10],c[10][10],i,j,k,m,n,o,p;
     clrscr();
     printf("\nMATRIX MULTIPLICATION\n");
     printf("\n----\n");
     printf("\nEnter the rows & columns of first matrix: ");
     scanf("%d %d",&m,&n);
     printf("\nEnter the rows & columns of second matrix: ");
     scanf("%d %d", &o, &p);
     if(n!=0)
     {
          printf("Matrix mutiplication is not possible");
          printf("\nColumn of first matrix must be same as row
          of second matrix");
     }
     else
     printf("\nEnter the First matrix-->");
     for(i=0;i<m;i++)
          for(j=0;j<n;j++)
          {
          scanf("%d",&a[i][j]);
          }
     printf("\nEnter the Second matrix-->");
     for(i=0;i<0;i++)
          for(j=0;j<p;j++)</pre>
          scanf("%d", &b[i][j]);
```

```
}
printf("\n\nThe First matrix is\n"); for(i=0;i<m;i++)</pre>
{
     printf("\n");
     for(j=0;j<n;j++)
     printf("%d\t",a[i][j]);
printf("\n\nThe Second matrix is\n");
for(i=0;i<0;i++)</pre>
{
     printf("\n");
     for(j=0;j<p;j++)
     {
           printf("%d\t",b[i][j]);
     }
for(i=0;i<m;i++) //row of first matrix</pre>
     for(j=0;j<p;j++) //column of second matrix</pre>
     c[i][j]=0;
           for (k=0; k< n; k++)
           {
           c[i][j] = c[i][j]+a[i][k]*b[k][j];
           }
     }
}
printf("\n\nThe multiplication of two matrix is\n");
for(i=0;i<m;i++)</pre>
printf("\n");
     for(j=0;j<p;j++)
```

```
printf("%d\t",c[i][j]);
}

getch();
}
```



## **RESULT**

Thus the C program to perform Matrix Multiplication was executed successfully and the output was verified.

Ex. No: 18

Date:

# **STRING CONCATENATION**

### AIM:

To write a program to perform the string Concatenation using C.

## **ALGORITHM:**

**Step 1:** Start the program

**Step 2:** Declare the variables.

**Step 3:** Read input str1 and str2.

**Step 4:** Concatenate the two strings using for loop..

**Step 5:** Store the concatenated string into str[k]. Print the String

**Step 6:** Stop the program

#### **PROGRAM: (STRING CONCATENATION)**

```
#include<stdio.h>
#include<conio.h>
void main()
{
     int i,j,k;
     char str[10], str1[10], str2[20];
     clrscr();
     printf("\n Enter the String1:");
     gets(str1);
     printf("\n Enter the String2:");
     gets(str2);
     for(i=0, j=0; str1[i]!='\0';i++, j++)
     str[j]=str1[i];
     for(i=0, k=j; str2[i]!='\0';i++,k++)
     str[k]=str2[i];
     str[k]='\0';
     printf("\n The Concatenated String is %s",str);
     getch();
}
```



# **RESULT**

Thus the C program to perform String Concatenation is created successfully and the output was verified.

Ex. No: 19
Date:

## **STRING COMPARISON**

## AIM:

To write a program to perform the string Comparison using C.

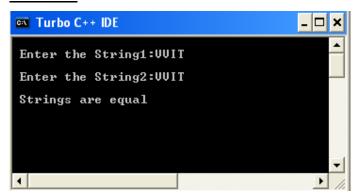
### **ALGORITHM:**

```
Step 1: Start the program
```

**Step 2:** Declare the variables.

**Step 3:** Read input str1 and str2.

**Step 4:** Compare the two strings using for loop..


**Step5:** If the strings are equal then print "Strings are equal".

**Step 6:** If the strings are not equal then print "Strings are not equal".

**Step 7:** Stop the program

#### **PROGRAM:** (STRING COMPARISON)

```
#include<stdio.h>
#include<conio.h>
void main()
     int i;
     char str1[10], str2[10];
     printf("\n Enter the String1:");
     gets(str1);
     printf("\n Enter the String2:");
     gets(str2);
     for (i=0; str1[i]!='\0'||str2[i]!='\0';i++)
     if(str1[i]!=str2[i])
          printf("\n Strings are not equal");
          break;
     else
          printf("\n Strings are equal");
          break;
     getch();
}
```



## **RESULT**

Thus the C program to perform String Comparison is created successfully and the output was verified.

Date:

## **STRING COPY**

### AIM:

To write a program to perform the string copy using C.

## **ALGORITHM:**

```
Step 1: Start the program
```

**Step 2:** Declare the variables.

**Step 3:** Read input str1 and str2.

**Step 4:** Copy the two strings using for loop..

**Step5:** Store the string into str2. Print the String

**Step 6:** Stop the program

#### **PROGRAM:** (STRING COPY)

```
#include<stdio.h>
void main()
{
    int i;
    char str1[10], str2[10];
    clrscr();
    printf(" Enter string 1");
    gets(str1);
    for(i=0; str1[i]!='\0'; i++)
    str2[i] = str1[i];
    str2[i] = '\0';
    printf("\n The Input string is %s", str1);
    printf("\n The Copied string2 is %s ", str2);
    getch();
}
```

# **RESULT**

Thus the C program to perform String Copy is created successfully and the output was verified.

```
Ex. No: 21
Date:
```

# **STRING LENGTH**

## AIM:

To write a program to find the length of the string using C.

## **ALGORITHM:**

```
Step 1: Start the program
```

**Step 2:** Declare the variables.

Step 3: Read input str.

**Step 4:** Find the string length using for loop..

**Step5:** Print the String length.

**Step 6:** Stop the program

### **PROGRAM: (STRING LENGTH)**

```
#include<stdio.h>
#include<conio.h>
void main()
{
    int i;
    char str[20];
    clrscr();
    printf("\n Enter the String");
    gets(str);
    for(i=0;str[i]!='\0';++i);
    printf("\n The no of characters in the String is %d",i);
    getch();
}
```



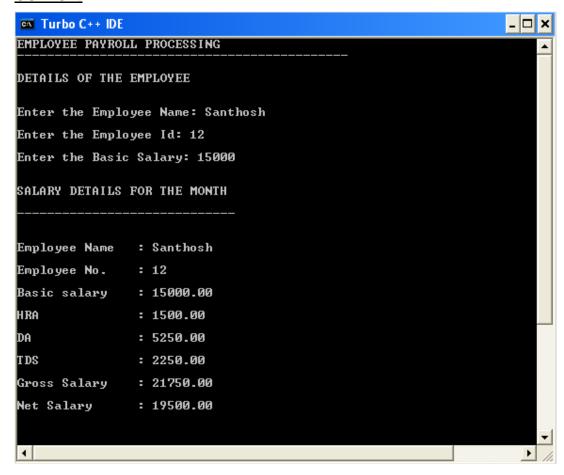
# **RESULT**

Thus the C program to find length of the string was created successfully and the output was verified.

Date:

# **PAYROLL PROCESSING USING UNION**

### AIM:


To write a C Program to create payroll processing using union.

### **ALGORITHM:**

- **Step 1:** Start the program
- **Step 2:** Declare the Union Employee with data members such as name, eno, basic salary, net salary, gross.
- Step 3: Get the details of an employee.
- **Step 4:** Enter the employee details such as Name, Emp No and Basic salary.
- **Step5:** Copy the emp.ename to Name by using STRCPY(NAME,EMP.ENAME) and assign ID=EMP.ENO, BASIC=EMP.BSAL.
- **Step 6:** Calculate HRA=10%\*BASIC, DA=35%\*BASIC, and TDS=15%\*BASIC
- Step 7: Calculate GROSS=BASIC+HRA+DA and NET SALARY=GROSS-TDS
- **Step 8**: Print Employee salary details such as Name, Id, Basic, HRA, DA, TDS, GROSS and NET SALARY.
- **Step 9**: Stop the program.

#### **PROGRAM:** (PAYROLL PROCESSING USING UNION)

```
#include<stdio.h>
#include<string.h>
#include<conio.h>
union employee
{
    char ename[30];
    int eno;
     float bsal;
};
void main()
    union employee emp; char name[30];
     int id;
    float basic, hra, da, tds, net, gross; clrscr();
    printf("\EMPLOYEE PAYROLL PROCESSING\n");
    printf("\----\n");
    printf("\nDETAILS OF THE EMPLOYEE\n\n");
    printf("\nEnter the Employee Name: ");
     scanf("%s",emp.ename);
    strcpy(name, emp.ename);
    printf("\nEnter the Employee Id: ");
     scanf("%d", &emp.eno);
    id=emp.eno;
    printf("\nEnter the Basic Salary: ");
     scanf("%f", &emp.bsal);
    basic=emp.bsal;
    hra=basic*.10;
    da=basic*.35;
    tds=basic*.15;
    gross=basic+hra+da;
    net=gross-tds;
    printf("\n\nSALARY DETAILS FOR THE MONTH\n");
    printf("\n----\n");
    printf("\n\nEmployee Name\t: %s", name);
    printf("\n\nEmployee No.\t: %d",id);
    printf("\n\nBasic salary\t: %.2f",basic);
    printf("\n\nHRA\t\t: %.2f",hra);
    printf("\n\nDA\t\t: %.2f",da);
    printf("\n\nTDS\t\t: %.2f",tds);
    printf("\n\nGross Salary\t: %.2f",gross);
    printf("\n\nNet Salary\t: %.2f",net);
    getch();
}
```



### **RESULT**

Thus a C program to implement the payroll processing using union was executed and the output was obtained

Date :

# EMPLOYEE DETAILS USING STRUCTURE

# AIM:

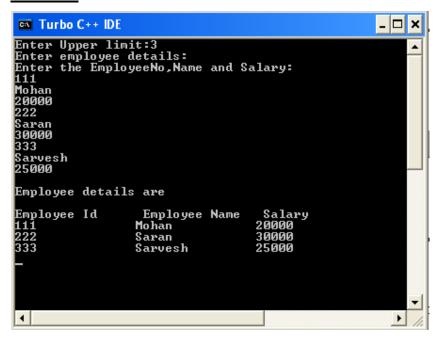
To write a C program to print the employee details of employees using structure.

# **ALGORITHM:**

**Step 1:** Start the program

**Step 2:** Declare the variables using structure.

**Step 3:** Read total number of employees n.


Step 4: Read e[i].eno.e[i].ename,e[i].salary

Step5: Print e[i].eno.e[i].ename,e[i].salary

**Step 6:** Stop the program

#### PROGRAM: (EMPLOYEE DETAILS USING STRUCTURE)

```
#include<conio.h>
struct emp
{
     int eno;
     char ename[10];
     int salary;
} e[10];
void main()
     int i,n;
     clrscr();
     printf("Enter Upper limit:");
     scanf("%d",&n);
     printf("Enter employee details:\n");
     printf("Enter the EmployeeNo, Name and
     Salary:\n");
     for(i=0;i<n;i++)
     scanf("%d%s%d",&e[i].eno,e[i].ename,&e[i].salary
     );
     printf("\n");
     printf("Employee details are \n\n");
     printf("Employee Id \t Employee Name \t
     Salary\n");
     for(i=0;i<n;i++)
     printf("%d\t\t%s\t\t%d\n",e[i].eno,e[i].ename,e[
     i].salary);
     getch();
}
```



## **RESULT**

Thus the program to print the employee details using structure is created successfully and the output was verified.

Date :

# CALL BY VALUE AND CALL BY REFERENCE

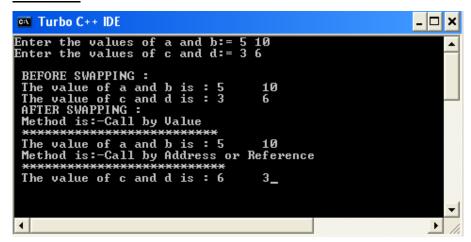
## AIM:

To write a C program to swap two numbers using pointers.

# **ALGORITHM:**

**Step 1:** Start the program

**Step 2:** Declare the two pointer variables.


**Step 3:** Get the value for both the variables.

**Step 4:** Swap the values.

**Step5:** Print the result.

**Step 6:** Stop the program

# **PROGRAM:** (CALL BY VALUE AND CALL BY REFERENCE) #include<stdio.h> #include<conio.h> void swap(int,int); void swap1(int\*,int\*); void main() int a,b,c,d; clrscr(); printf("Enter the values of a and b:= "); scanf("%d %d",&a,&b); printf("Enter the values of c and d:= "); scanf("%d %d",&c,&d); printf("\n BEFORE SWAPPING : "); printf("\n The value of a and b is : %d\t %d ",a,b); printf("\n The value of c and d is : %d\t %d ",c,d); printf("\n AFTER SWAPPING : "); swap(a,b);swap1 (&c, &d); printf("\n Method is:-Call by Value"); printf("\n \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*); printf("\n The value of a and b is : %d\t %d",a,b); printf("\n Method is:-Call by Address or Reference"); printf("\n \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*); printf("\n The value of c and d is : %d\t %d",c,d); getch(); void swap(int c,int d) int t; t=c; c=d;d=t;void swap1(int \*a,int \*b) int t; t=\*a; \*a=\*b; \*b=t; }



### **RESULT**

Thus, the given program has been executed successfully and the output was verified.